summaryrefslogtreecommitdiff
path: root/SRC/ssytd2.f
blob: dd7fa0725c4ee1f77ebb4f047502f38df63374d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
*> \brief \b SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SSYTD2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytd2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytd2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytd2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
*> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*>          n-by-n upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading n-by-n lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*>          of A are overwritten by the corresponding elements of the
*>          tridiagonal matrix T, and the elements above the first
*>          superdiagonal, with the array TAU, represent the orthogonal
*>          matrix Q as a product of elementary reflectors; if UPLO
*>          = 'L', the diagonal and first subdiagonal of A are over-
*>          written by the corresponding elements of the tridiagonal
*>          matrix T, and the elements below the first subdiagonal, with
*>          the array TAU, represent the orthogonal matrix Q as a product
*>          of elementary reflectors. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The diagonal elements of the tridiagonal matrix T:
*>          D(i) = A(i,i).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is REAL array, dimension (N-1)
*>          The off-diagonal elements of the tridiagonal matrix T:
*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is REAL array, dimension (N-1)
*>          The scalar factors of the elementary reflectors (see Further
*>          Details).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realSYcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(n-1) . . . H(2) H(1).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**T
*>
*>  where tau is a real scalar, and v is a real vector with
*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*>  A(1:i-1,i+1), and tau in TAU(i).
*>
*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
*>  reflectors
*>
*>     Q = H(1) H(2) . . . H(n-1).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**T
*>
*>  where tau is a real scalar, and v is a real vector with
*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
*>  and tau in TAU(i).
*>
*>  The contents of A on exit are illustrated by the following examples
*>  with n = 5:
*>
*>  if UPLO = 'U':                       if UPLO = 'L':
*>
*>    (  d   e   v2  v3  v4 )              (  d                  )
*>    (      d   e   v3  v4 )              (  e   d              )
*>    (          d   e   v4 )              (  v1  e   d          )
*>    (              d   e  )              (  v1  v2  e   d      )
*>    (                  d  )              (  v1  v2  v3  e   d  )
*>
*>  where d and e denote diagonal and off-diagonal elements of T, and vi
*>  denotes an element of the vector defining H(i).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, HALF
      PARAMETER          ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      REAL               ALPHA, TAUI
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SLARFG, SSYMV, SSYR2, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTD2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Reduce the upper triangle of A
*
         DO 10 I = N - 1, 1, -1
*
*           Generate elementary reflector H(i) = I - tau * v * v**T
*           to annihilate A(1:i-1,i+1)
*
            CALL SLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
            E( I ) = A( I, I+1 )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(1:i,1:i)
*
               A( I, I+1 ) = ONE
*
*              Compute  x := tau * A * v  storing x in TAU(1:i)
*
               CALL SSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
     $                     TAU, 1 )
*
*              Compute  w := x - 1/2 * tau * (x**T * v) * v
*
               ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, A( 1, I+1 ), 1 )
               CALL SAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w**T - w * v**T
*
               CALL SSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
     $                     LDA )
*
               A( I, I+1 ) = E( I )
            END IF
            D( I+1 ) = A( I+1, I+1 )
            TAU( I ) = TAUI
   10    CONTINUE
         D( 1 ) = A( 1, 1 )
      ELSE
*
*        Reduce the lower triangle of A
*
         DO 20 I = 1, N - 1
*
*           Generate elementary reflector H(i) = I - tau * v * v**T
*           to annihilate A(i+2:n,i)
*
            CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
     $                   TAUI )
            E( I ) = A( I+1, I )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(i+1:n,i+1:n)
*
               A( I+1, I ) = ONE
*
*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
*
               CALL SSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
*              Compute  w := x - 1/2 * tau * (x**T * v) * v
*
               ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, A( I+1, I ),
     $                 1 )
               CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w**T - w * v**T
*
               CALL SSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
     $                     A( I+1, I+1 ), LDA )
*
               A( I+1, I ) = E( I )
            END IF
            D( I ) = A( I, I )
            TAU( I ) = TAUI
   20    CONTINUE
         D( N ) = A( N, N )
      END IF
*
      RETURN
*
*     End of SSYTD2
*
      END