1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* SSYGS2 reduces a real symmetric-definite generalized eigenproblem
* to standard form.
*
* If ITYPE = 1, the problem is A*x = lambda*B*x,
* and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
*
* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
* B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
*
* B must have been previously factorized as U'*U or L*L' by SPOTRF.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
* = 2 or 3: compute U*A*U' or L'*A*L.
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored, and how B has been factorized.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* n by n upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n by n lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
*
* On exit, if INFO = 0, the transformed matrix, stored in the
* same format as A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input) REAL array, dimension (LDB,N)
* The triangular factor from the Cholesky factorization of B,
* as returned by SPOTRF.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, HALF
PARAMETER ( ONE = 1.0, HALF = 0.5 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER K
REAL AKK, BKK, CT
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSCAL, SSYR2, STRMV, STRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYGS2', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
IF( UPPER ) THEN
*
* Compute inv(U')*A*inv(U)
*
DO 10 K = 1, N
*
* Update the upper triangle of A(k:n,k:n)
*
AKK = A( K, K )
BKK = B( K, K )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL SSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
CT = -HALF*AKK
CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL SSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
$ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL STRSV( UPLO, 'Transpose', 'Non-unit', N-K,
$ B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
END IF
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L')
*
DO 20 K = 1, N
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = A( K, K )
BKK = B( K, K )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL SSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
CT = -HALF*AKK
CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
CALL SSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
$ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
CALL STRSV( UPLO, 'No transpose', 'Non-unit', N-K,
$ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
END IF
20 CONTINUE
END IF
ELSE
IF( UPPER ) THEN
*
* Compute U*A*U'
*
DO 30 K = 1, N
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = A( K, K )
BKK = B( K, K )
CALL STRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
$ LDB, A( 1, K ), 1 )
CT = HALF*AKK
CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL SSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
$ A, LDA )
CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL SSCAL( K-1, BKK, A( 1, K ), 1 )
A( K, K ) = AKK*BKK**2
30 CONTINUE
ELSE
*
* Compute L'*A*L
*
DO 40 K = 1, N
*
* Update the lower triangle of A(1:k,1:k)
*
AKK = A( K, K )
BKK = B( K, K )
CALL STRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
$ A( K, 1 ), LDA )
CT = HALF*AKK
CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL SSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
$ LDB, A, LDA )
CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL SSCAL( K-1, BKK, A( K, 1 ), LDA )
A( K, K ) = AKK*BKK**2
40 CONTINUE
END IF
END IF
RETURN
*
* End of SSYGS2
*
END
|