summaryrefslogtreecommitdiff
path: root/SRC/sstedc.f
blob: 444e659a7f70b00671d6671a5504d9a2e579cf5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
      SUBROUTINE SSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
     $                   LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  SSTEDC computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the divide and conquer method.
*  The eigenvectors of a full or band real symmetric matrix can also be
*  found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this
*  matrix to tridiagonal form.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.  See SLAED3 for details.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'I':  Compute eigenvectors of tridiagonal matrix also.
*          = 'V':  Compute eigenvectors of original dense symmetric
*                  matrix also.  On entry, Z contains the orthogonal
*                  matrix used to reduce the original matrix to
*                  tridiagonal form.
*
*  N       (input) INTEGER
*          The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the subdiagonal elements of the tridiagonal matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) REAL array, dimension (LDZ,N)
*          On entry, if COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If  COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1.
*          If eigenvectors are desired, then LDZ >= max(1,N).
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
*          If COMPZ = 'V' and N > 1 then LWORK must be at least
*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
*                         where lg( N ) = smallest integer k such
*                         that 2**k >= N.
*          If COMPZ = 'I' and N > 1 then LWORK must be at least
*                         ( 1 + 4*N + N**2 ).
*          Note that for COMPZ = 'I' or 'V', then if N is less than or
*          equal to the minimum divide size, usually 25, then LWORK need
*          only be max(1,2*(N-1)).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
*          If COMPZ = 'V' and N > 1 then LIWORK must be at least
*                         ( 6 + 6*N + 5*N*lg N ).
*          If COMPZ = 'I' and N > 1 then LIWORK must be at least
*                         ( 3 + 5*N ).
*          Note that for COMPZ = 'I' or 'V', then if N is less than or
*          equal to the minimum divide size, usually 25, then LIWORK
*          need only be 1.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
     $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
      REAL               EPS, ORGNRM, P, TINY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANST
      EXTERNAL           ILAENV, LSAME, SLAMCH, SLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SLACPY, SLAED0, SLASCL, SLASET, SLASRT,
     $                   SSTEQR, SSTERF, SSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, MOD, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR.
     $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
         INFO = -6
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*        Compute the workspace requirements
*
         SMLSIZ = ILAENV( 9, 'SSTEDC', ' ', 0, 0, 0, 0 )
         IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
            LIWMIN = 1
            LWMIN = 1
         ELSE IF( N.LE.SMLSIZ ) THEN
            LIWMIN = 1
            LWMIN = 2*( N - 1 )
         ELSE
            LGN = INT( LOG( REAL( N ) )/LOG( TWO ) )
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( ICOMPZ.EQ.1 ) THEN
               LWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
               LIWMIN = 6 + 6*N + 5*N*LGN
            ELSE IF( ICOMPZ.EQ.2 ) THEN
               LWMIN = 1 + 4*N + N**2
               LIWMIN = 3 + 5*N
            END IF
         END IF
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
*
         IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
            INFO = -8
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
            INFO = -10
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSTEDC', -INFO )
         RETURN
      ELSE IF (LQUERY) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.NE.0 )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     If the following conditional clause is removed, then the routine
*     will use the Divide and Conquer routine to compute only the
*     eigenvalues, which requires (3N + 3N**2) real workspace and
*     (2 + 5N + 2N lg(N)) integer workspace.
*     Since on many architectures SSTERF is much faster than any other
*     algorithm for finding eigenvalues only, it is used here
*     as the default. If the conditional clause is removed, then
*     information on the size of workspace needs to be changed.
*
*     If COMPZ = 'N', use SSTERF to compute the eigenvalues.
*
      IF( ICOMPZ.EQ.0 ) THEN
         CALL SSTERF( N, D, E, INFO )
         GO TO 50
      END IF
*
*     If N is smaller than the minimum divide size (SMLSIZ+1), then
*     solve the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
*
         CALL SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
      ELSE
*
*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
*        use.
*
         IF( ICOMPZ.EQ.1 ) THEN
            STOREZ = 1 + N*N
         ELSE
            STOREZ = 1
         END IF
*
         IF( ICOMPZ.EQ.2 ) THEN
            CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
         END IF
*
*        Scale.
*
         ORGNRM = SLANST( 'M', N, D, E )
         IF( ORGNRM.EQ.ZERO )
     $      GO TO 50
*
         EPS = SLAMCH( 'Epsilon' )
*
         START = 1
*
*        while ( START <= N )
*
   10    CONTINUE
         IF( START.LE.N ) THEN
*
*           Let FINISH be the position of the next subdiagonal entry
*           such that E( FINISH ) <= TINY or FINISH = N if no such
*           subdiagonal exists.  The matrix identified by the elements
*           between START and FINISH constitutes an independent
*           sub-problem.
*
            FINISH = START
   20       CONTINUE
            IF( FINISH.LT.N ) THEN
               TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
     $                    SQRT( ABS( D( FINISH+1 ) ) )
               IF( ABS( E( FINISH ) ).GT.TINY ) THEN
                  FINISH = FINISH + 1
                  GO TO 20
               END IF
            END IF
*
*           (Sub) Problem determined.  Compute its size and solve it.
*
            M = FINISH - START + 1
            IF( M.EQ.1 ) THEN
               START = FINISH + 1
               GO TO 10
            END IF
            IF( M.GT.SMLSIZ ) THEN
*
*              Scale.
*
               ORGNRM = SLANST( 'M', M, D( START ), E( START ) )
               CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
     $                      INFO )
               CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
     $                      M-1, INFO )
*
               IF( ICOMPZ.EQ.1 ) THEN
                  STRTRW = 1
               ELSE
                  STRTRW = START
               END IF
               CALL SLAED0( ICOMPZ, N, M, D( START ), E( START ),
     $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
     $                      WORK( STOREZ ), IWORK, INFO )
               IF( INFO.NE.0 ) THEN
                  INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
     $                   MOD( INFO, ( M+1 ) ) + START - 1
                  GO TO 50
               END IF
*
*              Scale back.
*
               CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
     $                      INFO )
*
            ELSE
               IF( ICOMPZ.EQ.1 ) THEN
*
*                 Since QR won't update a Z matrix which is larger than
*                 the length of D, we must solve the sub-problem in a
*                 workspace and then multiply back into Z.
*
                  CALL SSTEQR( 'I', M, D( START ), E( START ), WORK, M,
     $                         WORK( M*M+1 ), INFO )
                  CALL SLACPY( 'A', N, M, Z( 1, START ), LDZ,
     $                         WORK( STOREZ ), N )
                  CALL SGEMM( 'N', 'N', N, M, M, ONE,
     $                        WORK( STOREZ ), N, WORK, M, ZERO,
     $                        Z( 1, START ), LDZ )
               ELSE IF( ICOMPZ.EQ.2 ) THEN
                  CALL SSTEQR( 'I', M, D( START ), E( START ),
     $                         Z( START, START ), LDZ, WORK, INFO )
               ELSE
                  CALL SSTERF( M, D( START ), E( START ), INFO )
               END IF
               IF( INFO.NE.0 ) THEN
                  INFO = START*( N+1 ) + FINISH
                  GO TO 50
               END IF
            END IF
*
            START = FINISH + 1
            GO TO 10
         END IF
*
*        endwhile
*
*        If the problem split any number of times, then the eigenvalues
*        will not be properly ordered.  Here we permute the eigenvalues
*        (and the associated eigenvectors) into ascending order.
*
         IF( M.NE.N ) THEN
            IF( ICOMPZ.EQ.0 ) THEN
*
*              Use Quick Sort
*
               CALL SLASRT( 'I', N, D, INFO )
*
            ELSE
*
*              Use Selection Sort to minimize swaps of eigenvectors
*
               DO 40 II = 2, N
                  I = II - 1
                  K = I
                  P = D( I )
                  DO 30 J = II, N
                     IF( D( J ).LT.P ) THEN
                        K = J
                        P = D( J )
                     END IF
   30             CONTINUE
                  IF( K.NE.I ) THEN
                     D( K ) = D( I )
                     D( I ) = P
                     CALL SSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
                  END IF
   40          CONTINUE
            END IF
         END IF
      END IF
*
   50 CONTINUE
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of SSTEDC
*
      END