1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
$ LWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK driver routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL AP( * ), BP( * ), W( * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
* of a real generalized symmetric-definite eigenproblem, of the form
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
* B are assumed to be symmetric, stored in packed format, and B is also
* positive definite.
* If eigenvectors are desired, it uses a divide and conquer algorithm.
*
* The divide and conquer algorithm makes very mild assumptions about
* floating point arithmetic. It will work on machines with a guard
* digit in add/subtract, or on those binary machines without guard
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x
* = 2: A*B*x = (lambda)*x
* = 3: B*A*x = (lambda)*x
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangles of A and B are stored;
* = 'L': Lower triangles of A and B are stored.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
* On exit, the contents of AP are destroyed.
*
* BP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* B, packed columnwise in a linear array. The j-th column of B
* is stored in the array BP as follows:
* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*
* On exit, the triangular factor U or L from the Cholesky
* factorization B = U**T*U or B = L*L**T, in the same storage
* format as B.
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* Z (output) REAL array, dimension (LDZ, N)
* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
* eigenvectors. The eigenvectors are normalized as follows:
* if ITYPE = 1 or 2, Z**T*B*Z = I;
* if ITYPE = 3, Z**T*inv(B)*Z = I.
* If JOBZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the required LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If N <= 1, LWORK >= 1.
* If JOBZ = 'N' and N > 1, LWORK >= 2*N.
* If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the required sizes of the WORK and IWORK
* arrays, returns these values as the first entries of the WORK
* and IWORK arrays, and no error message related to LWORK or
* LIWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK.
* If JOBZ = 'N' or N <= 1, LIWORK >= 1.
* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
*
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the required sizes of the WORK and
* IWORK arrays, returns these values as the first entries of
* the WORK and IWORK arrays, and no error message related to
* LWORK or LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: SPPTRF or SSPEVD returned an error code:
* <= N: if INFO = i, SSPEVD failed to converge;
* i off-diagonal elements of an intermediate
* tridiagonal form did not converge to zero;
* > N: if INFO = N + i, for 1 <= i <= N, then the leading
* minor of order i of B is not positive definite.
* The factorization of B could not be completed and
* no eigenvalues or eigenvectors were computed.
*
* Further Details
* ===============
*
* Based on contributions by
* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
* =====================================================================
*
* .. Parameters ..
REAL TWO
PARAMETER ( TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER, WANTZ
CHARACTER TRANS
INTEGER J, LIWMIN, LWMIN, NEIG
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
INFO = 0
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -9
END IF
*
IF( INFO.EQ.0 ) THEN
IF( N.LE.1 ) THEN
LIWMIN = 1
LWMIN = 1
ELSE
IF( WANTZ ) THEN
LIWMIN = 3 + 5*N
LWMIN = 1 + 6*N + 2*N**2
ELSE
LIWMIN = 1
LWMIN = 2*N
END IF
END IF
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -11
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSPGVD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form a Cholesky factorization of BP.
*
CALL SPPTRF( UPLO, N, BP, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
LWMIN = MAX( REAL( LWMIN ), REAL( WORK( 1 ) ) )
LIWMIN = MAX( REAL( LIWMIN ), REAL( IWORK( 1 ) ) )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
NEIG = N
IF( INFO.GT.0 )
$ NEIG = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
DO 10 J = 1, NEIG
CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
$ 1 )
10 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**T *y
*
IF( UPPER ) THEN
TRANS = 'T'
ELSE
TRANS = 'N'
END IF
*
DO 20 J = 1, NEIG
CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
$ 1 )
20 CONTINUE
END IF
END IF
*
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of SSPGVD
*
END
|