summaryrefslogtreecommitdiff
path: root/SRC/spstf2.f
blob: df0530bf14ce4eca5f3cd86e4bab85f500eb09c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
      SUBROUTINE SPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
*  -- LAPACK PROTOTYPE routine (version 3.2) --
*     Craig Lucas, University of Manchester / NAG Ltd.
*     October, 2008
*
*     .. Scalar Arguments ..
      REAL               TOL
      INTEGER            INFO, LDA, N, RANK
      CHARACTER          UPLO
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), WORK( 2*N )
      INTEGER            PIV( N )
*     ..
*
*  Purpose
*  =======
*
*  SPSTF2 computes the Cholesky factorization with complete
*  pivoting of a real symmetric positive semidefinite matrix A.
*
*  The factorization has the form
*     P' * A * P = U' * U ,  if UPLO = 'U',
*     P' * A * P = L  * L',  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular, and
*  P is stored as vector PIV.
*
*  This algorithm does not attempt to check that A is positive
*  semidefinite. This version of the algorithm calls level 2 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n by n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n by n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization as above.
*
*  PIV     (output) INTEGER array, dimension (N)
*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
*
*  RANK    (output) INTEGER
*          The rank of A given by the number of steps the algorithm
*          completed.
*
*  TOL     (input) REAL
*          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
*          will be used. The algorithm terminates at the (K-1)st step
*          if the pivot <= TOL.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  WORK    REAL array, dimension (2*N)
*          Work space.
*
*  INFO    (output) INTEGER
*          < 0: If INFO = -K, the K-th argument had an illegal value,
*          = 0: algorithm completed successfully, and
*          > 0: the matrix A is either rank deficient with computed rank
*               as returned in RANK, or is indefinite.  See Section 7 of
*               LAPACK Working Note #161 for further information.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               AJJ, SSTOP, STEMP
      INTEGER            I, ITEMP, J, PVT
      LOGICAL            UPPER
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      LOGICAL            LSAME, SISNAN
      EXTERNAL           SLAMCH, LSAME, SISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SSCAL, SSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT, MAXLOC
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPSTF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize PIV
*
      DO 100 I = 1, N
         PIV( I ) = I
  100 CONTINUE
*
*     Compute stopping value
*
      PVT = 1
      AJJ = A( PVT, PVT )
      DO I = 2, N
         IF( A( I, I ).GT.AJJ ) THEN
            PVT = I
            AJJ = A( PVT, PVT )
         END IF
      END DO
      IF( AJJ.EQ.ZERO.OR.SISNAN( AJJ ) ) THEN
         RANK = 0
         INFO = 1
         GO TO 170
      END IF
*
*     Compute stopping value if not supplied
*
      IF( TOL.LT.ZERO ) THEN
         SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
      ELSE
         SSTOP = TOL
      END IF
*
*     Set first half of WORK to zero, holds dot products
*
      DO 110 I = 1, N
         WORK( I ) = 0
  110 CONTINUE
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization P' * A * P = U' * U
*
         DO 130 J = 1, N
*
*        Find pivot, test for exit, else swap rows and columns
*        Update dot products, compute possible pivots which are
*        stored in the second half of WORK
*
            DO 120 I = J, N
*
               IF( J.GT.1 ) THEN
                  WORK( I ) = WORK( I ) + A( J-1, I )**2
               END IF
               WORK( N+I ) = A( I, I ) - WORK( I )
*
  120       CONTINUE
*
            IF( J.GT.1 ) THEN
               ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
               PVT = ITEMP + J - 1
               AJJ = WORK( N+PVT )
               IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
                  A( J, J ) = AJJ
                  GO TO 160
               END IF
            END IF
*
            IF( J.NE.PVT ) THEN
*
*              Pivot OK, so can now swap pivot rows and columns
*
               A( PVT, PVT ) = A( J, J )
               CALL SSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
               IF( PVT.LT.N )
     $            CALL SSWAP( N-PVT, A( J, PVT+1 ), LDA,
     $                        A( PVT, PVT+1 ), LDA )
               CALL SSWAP( PVT-J-1, A( J, J+1 ), LDA, A( J+1, PVT ), 1 )
*
*              Swap dot products and PIV
*
               STEMP = WORK( J )
               WORK( J ) = WORK( PVT )
               WORK( PVT ) = STEMP
               ITEMP = PIV( PVT )
               PIV( PVT ) = PIV( J )
               PIV( J ) = ITEMP
            END IF
*
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of row J
*
            IF( J.LT.N ) THEN
               CALL SGEMV( 'Trans', J-1, N-J, -ONE, A( 1, J+1 ), LDA,
     $                     A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
               CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
            END IF
*
  130    CONTINUE
*
      ELSE
*
*        Compute the Cholesky factorization P' * A * P = L * L'
*
         DO 150 J = 1, N
*
*        Find pivot, test for exit, else swap rows and columns
*        Update dot products, compute possible pivots which are
*        stored in the second half of WORK
*
            DO 140 I = J, N
*
               IF( J.GT.1 ) THEN
                  WORK( I ) = WORK( I ) + A( I, J-1 )**2
               END IF
               WORK( N+I ) = A( I, I ) - WORK( I )
*
  140       CONTINUE
*
            IF( J.GT.1 ) THEN
               ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
               PVT = ITEMP + J - 1
               AJJ = WORK( N+PVT )
               IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
                  A( J, J ) = AJJ
                  GO TO 160
               END IF
            END IF
*
            IF( J.NE.PVT ) THEN
*
*              Pivot OK, so can now swap pivot rows and columns
*
               A( PVT, PVT ) = A( J, J )
               CALL SSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
               IF( PVT.LT.N )
     $            CALL SSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
     $                        1 )
               CALL SSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ), LDA )
*
*              Swap dot products and PIV
*
               STEMP = WORK( J )
               WORK( J ) = WORK( PVT )
               WORK( PVT ) = STEMP
               ITEMP = PIV( PVT )
               PIV( PVT ) = PIV( J )
               PIV( J ) = ITEMP
            END IF
*
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of column J
*
            IF( J.LT.N ) THEN
               CALL SGEMV( 'No Trans', N-J, J-1, -ONE, A( J+1, 1 ), LDA,
     $                     A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
               CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
            END IF
*
  150    CONTINUE
*
      END IF
*
*     Ran to completion, A has full rank
*
      RANK = N
*
      GO TO 170
  160 CONTINUE
*
*     Rank is number of steps completed.  Set INFO = 1 to signal
*     that the factorization cannot be used to solve a system.
*
      RANK = J - 1
      INFO = 1
*
  170 CONTINUE
      RETURN
*
*     End of SPSTF2
*
      END