summaryrefslogtreecommitdiff
path: root/SRC/spptrs.f
blob: b099f55a9e2cd24e0f256bb9d074822a2e9ce1fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      SUBROUTINE SPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               AP( * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  SPPTRS solves a system of linear equations A*X = B with a symmetric
*  positive definite matrix A in packed storage using the Cholesky
*  factorization A = U**T*U or A = L*L**T computed by SPPTRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  AP      (input) REAL array, dimension (N*(N+1)/2)
*          The triangular factor U or L from the Cholesky factorization
*          A = U**T*U or A = L*L**T, packed columnwise in a linear
*          array.  The j-th column of U or L is stored in the array AP
*          as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           STPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPPTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Solve A*X = B where A = U**T * U.
*
         DO 10 I = 1, NRHS
*
*           Solve U**T *X = B, overwriting B with X.
*
            CALL STPSV( 'Upper', 'Transpose', 'Non-unit', N, AP,
     $                  B( 1, I ), 1 )
*
*           Solve U*X = B, overwriting B with X.
*
            CALL STPSV( 'Upper', 'No transpose', 'Non-unit', N, AP,
     $                  B( 1, I ), 1 )
   10    CONTINUE
      ELSE
*
*        Solve A*X = B where A = L * L**T.
*
         DO 20 I = 1, NRHS
*
*           Solve L*Y = B, overwriting B with X.
*
            CALL STPSV( 'Lower', 'No transpose', 'Non-unit', N, AP,
     $                  B( 1, I ), 1 )
*
*           Solve L**T *X = Y, overwriting B with X.
*
            CALL STPSV( 'Lower', 'Transpose', 'Non-unit', N, AP,
     $                  B( 1, I ), 1 )
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of SPPTRS
*
      END