1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
SUBROUTINE SPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
REAL AMAX, SCOND
* ..
* .. Array Arguments ..
REAL AP( * ), S( * )
* ..
*
* Purpose
* =======
*
* SPPEQU computes row and column scalings intended to equilibrate a
* symmetric positive definite matrix A in packed storage and reduce
* its condition number (with respect to the two-norm). S contains the
* scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
* B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
* This choice of S puts the condition number of B within a factor N of
* the smallest possible condition number over all possible diagonal
* scalings.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input) REAL array, dimension (N*(N+1)/2)
* The upper or lower triangle of the symmetric matrix A, packed
* columnwise in a linear array. The j-th column of A is stored
* in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* S (output) REAL array, dimension (N)
* If INFO = 0, S contains the scale factors for A.
*
* SCOND (output) REAL
* If INFO = 0, S contains the ratio of the smallest S(i) to
* the largest S(i). If SCOND >= 0.1 and AMAX is neither too
* large nor too small, it is not worth scaling by S.
*
* AMAX (output) REAL
* Absolute value of largest matrix element. If AMAX is very
* close to overflow or very close to underflow, the matrix
* should be scaled.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the i-th diagonal element is nonpositive.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, JJ
REAL SMIN
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPPEQU', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
SCOND = ONE
AMAX = ZERO
RETURN
END IF
*
* Initialize SMIN and AMAX.
*
S( 1 ) = AP( 1 )
SMIN = S( 1 )
AMAX = S( 1 )
*
IF( UPPER ) THEN
*
* UPLO = 'U': Upper triangle of A is stored.
* Find the minimum and maximum diagonal elements.
*
JJ = 1
DO 10 I = 2, N
JJ = JJ + I
S( I ) = AP( JJ )
SMIN = MIN( SMIN, S( I ) )
AMAX = MAX( AMAX, S( I ) )
10 CONTINUE
*
ELSE
*
* UPLO = 'L': Lower triangle of A is stored.
* Find the minimum and maximum diagonal elements.
*
JJ = 1
DO 20 I = 2, N
JJ = JJ + N - I + 2
S( I ) = AP( JJ )
SMIN = MIN( SMIN, S( I ) )
AMAX = MAX( AMAX, S( I ) )
20 CONTINUE
END IF
*
IF( SMIN.LE.ZERO ) THEN
*
* Find the first non-positive diagonal element and return.
*
DO 30 I = 1, N
IF( S( I ).LE.ZERO ) THEN
INFO = I
RETURN
END IF
30 CONTINUE
ELSE
*
* Set the scale factors to the reciprocals
* of the diagonal elements.
*
DO 40 I = 1, N
S( I ) = ONE / SQRT( S( I ) )
40 CONTINUE
*
* Compute SCOND = min(S(I)) / max(S(I))
*
SCOND = SQRT( SMIN ) / SQRT( AMAX )
END IF
RETURN
*
* End of SPPEQU
*
END
|