summaryrefslogtreecommitdiff
path: root/SRC/sormr2.f
blob: e1b36c106b0cfae198095b3062723e74b2d31f89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
*> \brief \b SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SORMR2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormr2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormr2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormr2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
*                          WORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          SIDE, TRANS
*       INTEGER            INFO, K, LDA, LDC, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SORMR2 overwrites the general real m by n matrix C with
*>
*>       Q * C  if SIDE = 'L' and TRANS = 'N', or
*>
*>       Q**T* C  if SIDE = 'L' and TRANS = 'T', or
*>
*>       C * Q  if SIDE = 'R' and TRANS = 'N', or
*>
*>       C * Q**T if SIDE = 'R' and TRANS = 'T',
*>
*> where Q is a real orthogonal matrix defined as the product of k
*> elementary reflectors
*>
*>       Q = H(1) H(2) . . . H(k)
*>
*> as returned by SGERQF. Q is of order m if SIDE = 'L' and of order n
*> if SIDE = 'R'.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**T from the Left
*>          = 'R': apply Q or Q**T from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N': apply Q  (No transpose)
*>          = 'T': apply Q' (Transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          If SIDE = 'L', M >= K >= 0;
*>          if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension
*>                               (LDA,M) if SIDE = 'L',
*>                               (LDA,N) if SIDE = 'R'
*>          The i-th row must contain the vector which defines the
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
*>          SGERQF in the last k rows of its array argument A.
*>          A is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (K)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by SGERQF.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension (LDC,N)
*>          On entry, the m by n matrix C.
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension
*>                                   (N) if SIDE = 'L',
*>                                   (M) if SIDE = 'R'
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, LDA, LDC, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, NOTRAN
      INTEGER            I, I1, I2, I3, MI, NI, NQ
      REAL               AII
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
*
*     NQ is the order of Q
*
      IF( LEFT ) THEN
         NQ = M
      ELSE
         NQ = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORMR2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
     $   RETURN
*
      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
     $     THEN
         I1 = 1
         I2 = K
         I3 = 1
      ELSE
         I1 = K
         I2 = 1
         I3 = -1
      END IF
*
      IF( LEFT ) THEN
         NI = N
      ELSE
         MI = M
      END IF
*
      DO 10 I = I1, I2, I3
         IF( LEFT ) THEN
*
*           H(i) is applied to C(1:m-k+i,1:n)
*
            MI = M - K + I
         ELSE
*
*           H(i) is applied to C(1:m,1:n-k+i)
*
            NI = N - K + I
         END IF
*
*        Apply H(i)
*
         AII = A( I, NQ-K+I )
         A( I, NQ-K+I ) = ONE
         CALL SLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC,
     $               WORK )
         A( I, NQ-K+I ) = AII
   10 CONTINUE
      RETURN
*
*     End of SORMR2
*
      END