summaryrefslogtreecommitdiff
path: root/SRC/sormbr.f
blob: 425e04cd2df766616c29f593f5c4ba3a75b61b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
*> \brief \b SORMBR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORMBR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormbr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormbr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormbr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
*                          LDC, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          SIDE, TRANS, VECT
*       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
*      $                   WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
*> with
*>                 SIDE = 'L'     SIDE = 'R'
*> TRANS = 'N':      Q * C          C * Q
*> TRANS = 'T':      Q**T * C       C * Q**T
*>
*> If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
*> with
*>                 SIDE = 'L'     SIDE = 'R'
*> TRANS = 'N':      P * C          C * P
*> TRANS = 'T':      P**T * C       C * P**T
*>
*> Here Q and P**T are the orthogonal matrices determined by SGEBRD when
*> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
*> P**T are defined as products of elementary reflectors H(i) and G(i)
*> respectively.
*>
*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
*> order of the orthogonal matrix Q or P**T that is applied.
*>
*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
*> if nq >= k, Q = H(1) H(2) . . . H(k);
*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
*>
*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
*> if k < nq, P = G(1) G(2) . . . G(k);
*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] VECT
*> \verbatim
*>          VECT is CHARACTER*1
*>          = 'Q': apply Q or Q**T;
*>          = 'P': apply P or P**T.
*> \endverbatim
*>
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q, Q**T, P or P**T from the Left;
*>          = 'R': apply Q, Q**T, P or P**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q  or P;
*>          = 'T':  Transpose, apply Q**T or P**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          If VECT = 'Q', the number of columns in the original
*>          matrix reduced by SGEBRD.
*>          If VECT = 'P', the number of rows in the original
*>          matrix reduced by SGEBRD.
*>          K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension
*>                                (LDA,min(nq,K)) if VECT = 'Q'
*>                                (LDA,nq)        if VECT = 'P'
*>          The vectors which define the elementary reflectors H(i) and
*>          G(i), whose products determine the matrices Q and P, as
*>          returned by SGEBRD.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*>          If VECT = 'Q', LDA >= max(1,nq);
*>          if VECT = 'P', LDA >= max(1,min(nq,K)).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (min(nq,K))
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i) or G(i) which determines Q or P, as returned
*>          by SGEBRD in the array argument TAUQ or TAUP.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
*>          or P*C or P**T*C or C*P or C*P**T.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          If SIDE = 'L', LWORK >= max(1,N);
*>          if SIDE = 'R', LWORK >= max(1,M).
*>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
*>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*>          blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
     $                   LDC, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS, VECT
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
      CHARACTER          TRANST
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           ILAENV, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORMLQ, SORMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      APPLYQ = LSAME( VECT, 'Q' )
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
*
*     NQ is the order of Q or P and NW is the minimum dimension of WORK
*
      IF( LEFT ) THEN
         NQ = M
         NW = N
      ELSE
         NQ = N
         NW = M
      END IF
      IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( K.LT.0 ) THEN
         INFO = -6
      ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
     $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
     $          THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( APPLYQ ) THEN
            IF( LEFT ) THEN
               NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1,
     $                      -1 )
            ELSE
               NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1,
     $                      -1 )
            END IF
         ELSE
            IF( LEFT ) THEN
               NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M-1, N, M-1,
     $                      -1 )
            ELSE
               NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M, N-1, N-1,
     $                      -1 )
            END IF
         END IF
         LWKOPT = MAX( 1, NW )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORMBR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      WORK( 1 ) = 1
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      IF( APPLYQ ) THEN
*
*        Apply Q
*
         IF( NQ.GE.K ) THEN
*
*           Q was determined by a call to SGEBRD with nq >= k
*
            CALL SORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
*
*           Q was determined by a call to SGEBRD with nq < k
*
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
     $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      ELSE
*
*        Apply P
*
         IF( NOTRAN ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
         IF( NQ.GT.K ) THEN
*
*           P was determined by a call to SGEBRD with nq > k
*
            CALL SORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
*
*           P was determined by a call to SGEBRD with nq <= k
*
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL SORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
     $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of SORMBR
*
      END