1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
$ LDC, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS, VECT
INTEGER INFO, K, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), C( LDC, * ), TAU( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
* with
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': Q * C C * Q
* TRANS = 'T': Q**T * C C * Q**T
*
* If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
* with
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': P * C C * P
* TRANS = 'T': P**T * C C * P**T
*
* Here Q and P**T are the orthogonal matrices determined by SGEBRD when
* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
* P**T are defined as products of elementary reflectors H(i) and G(i)
* respectively.
*
* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
* order of the orthogonal matrix Q or P**T that is applied.
*
* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
* if nq >= k, Q = H(1) H(2) . . . H(k);
* if nq < k, Q = H(1) H(2) . . . H(nq-1).
*
* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
* if k < nq, P = G(1) G(2) . . . G(k);
* if k >= nq, P = G(1) G(2) . . . G(nq-1).
*
* Arguments
* =========
*
* VECT (input) CHARACTER*1
* = 'Q': apply Q or Q**T;
* = 'P': apply P or P**T.
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q, Q**T, P or P**T from the Left;
* = 'R': apply Q, Q**T, P or P**T from the Right.
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, apply Q or P;
* = 'T': Transpose, apply Q**T or P**T.
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* K (input) INTEGER
* If VECT = 'Q', the number of columns in the original
* matrix reduced by SGEBRD.
* If VECT = 'P', the number of rows in the original
* matrix reduced by SGEBRD.
* K >= 0.
*
* A (input) REAL array, dimension
* (LDA,min(nq,K)) if VECT = 'Q'
* (LDA,nq) if VECT = 'P'
* The vectors which define the elementary reflectors H(i) and
* G(i), whose products determine the matrices Q and P, as
* returned by SGEBRD.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
* If VECT = 'Q', LDA >= max(1,nq);
* if VECT = 'P', LDA >= max(1,min(nq,K)).
*
* TAU (input) REAL array, dimension (min(nq,K))
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i) or G(i) which determines Q or P, as returned
* by SGEBRD in the array argument TAUQ or TAUP.
*
* C (input/output) REAL array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
* or P*C or P**T*C or C*P or C*P**T.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If SIDE = 'L', LWORK >= max(1,N);
* if SIDE = 'R', LWORK >= max(1,M).
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
* blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
CHARACTER TRANST
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL SORMLQ, SORMQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
APPLYQ = LSAME( VECT, 'Q' )
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q or P and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
INFO = -1
ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
INFO = -3
ELSE IF( M.LT.0 ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( K.LT.0 ) THEN
INFO = -6
ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
$ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
$ THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
IF( APPLYQ ) THEN
IF( LEFT ) THEN
NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
ELSE
IF( LEFT ) THEN
NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M-1, N, M-1,
$ -1 )
ELSE
NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M, N-1, N-1,
$ -1 )
END IF
END IF
LWKOPT = MAX( 1, NW )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORMBR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
WORK( 1 ) = 1
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
IF( APPLYQ ) THEN
*
* Apply Q
*
IF( NQ.GE.K ) THEN
*
* Q was determined by a call to SGEBRD with nq >= k
*
CALL SORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, LWORK, IINFO )
ELSE IF( NQ.GT.1 ) THEN
*
* Q was determined by a call to SGEBRD with nq < k
*
IF( LEFT ) THEN
MI = M - 1
NI = N
I1 = 2
I2 = 1
ELSE
MI = M
NI = N - 1
I1 = 1
I2 = 2
END IF
CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
$ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
END IF
ELSE
*
* Apply P
*
IF( NOTRAN ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
IF( NQ.GT.K ) THEN
*
* P was determined by a call to SGEBRD with nq > k
*
CALL SORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, LWORK, IINFO )
ELSE IF( NQ.GT.1 ) THEN
*
* P was determined by a call to SGEBRD with nq <= k
*
IF( LEFT ) THEN
MI = M - 1
NI = N
I1 = 2
I2 = 1
ELSE
MI = M
NI = N - 1
I1 = 1
I2 = 2
END IF
CALL SORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
$ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
END IF
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of SORMBR
*
END
|