1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
*> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORM22 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
* $ WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
* ..
* .. Array Arguments ..
* REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
* ..
*
*> \par Purpose
* ============
*>
*> \verbatim
*>
*>
*> SORM22 overwrites the general real M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'T': Q**T * C C * Q**T
*>
*> where Q is a real orthogonal matrix of order NQ, with NQ = M if
*> SIDE = 'L' and NQ = N if SIDE = 'R'.
*> The orthogonal matrix Q processes a 2-by-2 block structure
*>
*> [ Q11 Q12 ]
*> Q = [ ]
*> [ Q21 Q22 ],
*>
*> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
*> N2-by-N2 upper triangular matrix.
*> \endverbatim
*
* Arguments
* =========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left;
*> = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply Q (No transpose);
*> = 'C': apply Q**T (Conjugate transpose).
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] N1
*> \param[in] N2
*> \verbatim
*> N1 is INTEGER
*> N2 is INTEGER
*> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
*> The following requirement must be satisfied:
*> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is REAL array, dimension
*> (LDQ,M) if SIDE = 'L'
*> (LDQ,N) if SIDE = 'R'
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q.
*> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If SIDE = 'L', LWORK >= max(1,N);
*> if SIDE = 'R', LWORK >= max(1,M).
*> For optimum performance LWORK >= M*N.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date January 2015
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
$ WORK, LWORK, INFO )
*
* -- LAPACK computational routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* January 2015
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
* ..
* .. Array Arguments ..
REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
*
* .. Local Scalars ..
LOGICAL LEFT, LQUERY, NOTRAN
INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, STRMM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q;
* NW is the minimum dimension of WORK.
*
IF( LEFT ) THEN
NQ = M
ELSE
NQ = N
END IF
NW = NQ
IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
$ THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
INFO = -5
ELSE IF( N2.LT.0 ) THEN
INFO = -6
ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.EQ.0 ) THEN
LWKOPT = M*N
WORK( 1 ) = REAL( LWKOPT )
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SORM22', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
*
IF( N1.EQ.0 ) THEN
CALL STRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
$ Q, LDQ, C, LDC )
WORK( 1 ) = ONE
RETURN
ELSE IF( N2.EQ.0 ) THEN
CALL STRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
$ Q, LDQ, C, LDC )
WORK( 1 ) = ONE
RETURN
END IF
*
* Compute the largest chunk size available from the workspace.
*
NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
*
IF( LEFT ) THEN
IF( NOTRAN ) THEN
DO I = 1, N, NB
LEN = MIN( NB, N-I+1 )
LDWORK = M
*
* Multiply bottom part of C by Q12.
*
CALL SLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
$ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply top part of C by Q11.
*
CALL SGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
$ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
$ LDWORK )
*
* Multiply top part of C by Q21.
*
CALL SLACPY( 'All', N2, LEN, C( 1, I ), LDC,
$ WORK( N1+1 ), LDWORK )
CALL STRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
$ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
$ WORK( N1+1 ), LDWORK )
*
* Multiply bottom part of C by Q22.
*
CALL SGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
$ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
$ ONE, WORK( N1+1 ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
$ LDC )
END DO
ELSE
DO I = 1, N, NB
LEN = MIN( NB, N-I+1 )
LDWORK = M
*
* Multiply bottom part of C by Q21**T.
*
CALL SLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
$ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply top part of C by Q11**T.
*
CALL SGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
$ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
$ LDWORK )
*
* Multiply top part of C by Q12**T.
*
CALL SLACPY( 'All', N1, LEN, C( 1, I ), LDC,
$ WORK( N2+1 ), LDWORK )
CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
$ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
$ WORK( N2+1 ), LDWORK )
*
* Multiply bottom part of C by Q22**T.
*
CALL SGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
$ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
$ ONE, WORK( N2+1 ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
$ LDC )
END DO
END IF
ELSE
IF( NOTRAN ) THEN
DO I = 1, M, NB
LEN = MIN( NB, M-I+1 )
LDWORK = LEN
*
* Multiply right part of C by Q21.
*
CALL SLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
$ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply left part of C by Q11.
*
CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
$ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
$ LDWORK )
*
* Multiply left part of C by Q12.
*
CALL SLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
$ WORK( 1 + N2*LDWORK ), LDWORK )
CALL STRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
$ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
$ WORK( 1 + N2*LDWORK ), LDWORK )
*
* Multiply right part of C by Q22.
*
CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
$ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
$ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
$ LDC )
END DO
ELSE
DO I = 1, M, NB
LEN = MIN( NB, M-I+1 )
LDWORK = LEN
*
* Multiply right part of C by Q12**T.
*
CALL SLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
$ LDWORK )
CALL STRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
$ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
$ LDWORK )
*
* Multiply left part of C by Q11**T.
*
CALL SGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
$ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
$ LDWORK )
*
* Multiply left part of C by Q21**T.
*
CALL SLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
$ WORK( 1 + N1*LDWORK ), LDWORK )
CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
$ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
$ WORK( 1 + N1*LDWORK ), LDWORK )
*
* Multiply right part of C by Q22**T.
*
CALL SGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
$ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
$ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
*
* Copy everything back.
*
CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
$ LDC )
END DO
END IF
END IF
*
WORK( 1 ) = REAL( LWKOPT )
RETURN
*
* End of SORM22
*
END
|