summaryrefslogtreecommitdiff
path: root/SRC/sorgr2.f
blob: bf93b4fe16ae7fe940c6e6bf7122f4bca459fab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      SUBROUTINE SORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SORGR2 generates an m by n real matrix Q with orthonormal rows,
*  which is defined as the last m rows of a product of k elementary
*  reflectors of order n
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by SGERQF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. N >= M.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the (m-k+i)-th row must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by SGERQF in the last k rows of its array argument
*          A.
*          On exit, the m by n matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGERQF.
*
*  WORK    (workspace) REAL array, dimension (M)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGR2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 )
     $   RETURN
*
      IF( K.LT.M ) THEN
*
*        Initialise rows 1:m-k to rows of the unit matrix
*
         DO 20 J = 1, N
            DO 10 L = 1, M - K
               A( L, J ) = ZERO
   10       CONTINUE
            IF( J.GT.N-M .AND. J.LE.N-K )
     $         A( M-N+J, J ) = ONE
   20    CONTINUE
      END IF
*
      DO 40 I = 1, K
         II = M - K + I
*
*        Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
*
         A( II, N-M+II ) = ONE
         CALL SLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
     $               A, LDA, WORK )
         CALL SSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
         A( II, N-M+II ) = ONE - TAU( I )
*
*        Set A(m-k+i,n-k+i+1:n) to zero
*
         DO 30 L = N - M + II + 1, N
            A( II, L ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of SORGR2
*
      END