1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
*> \brief \b SORCSD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORCSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
* SIGNS, M, P, Q, X11, LDX11, X12,
* LDX12, X21, LDX21, X22, LDX22, THETA,
* U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
* LDV2T, WORK, LWORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
* $ LDX21, LDX22, LWORK, M, P, Q
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL THETA( * )
* REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
* $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
* $ * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SORCSD computes the CS decomposition of an M-by-M partitioned
*> orthogonal matrix X:
*>
*> [ I 0 0 | 0 0 0 ]
*> [ 0 C 0 | 0 -S 0 ]
*> [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T
*> X = [-----------] = [---------] [---------------------] [---------] .
*> [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
*> [ 0 S 0 | 0 C 0 ]
*> [ 0 0 I | 0 0 0 ]
*>
*> X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
*> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
*> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
*> which R = MIN(P,M-P,Q,M-Q).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBU1
*> \verbatim
*> JOBU1 is CHARACTER
*> = 'Y': U1 is computed;
*> otherwise: U1 is not computed.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*> JOBU2 is CHARACTER
*> = 'Y': U2 is computed;
*> otherwise: U2 is not computed.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*> JOBV1T is CHARACTER
*> = 'Y': V1T is computed;
*> otherwise: V1T is not computed.
*> \endverbatim
*>
*> \param[in] JOBV2T
*> \verbatim
*> JOBV2T is CHARACTER
*> = 'Y': V2T is computed;
*> otherwise: V2T is not computed.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
*> order;
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
*> major order.
*> \endverbatim
*>
*> \param[in] SIGNS
*> \verbatim
*> SIGNS is CHARACTER
*> = 'O': The lower-left block is made nonpositive (the
*> "other" convention);
*> otherwise: The upper-right block is made nonpositive (the
*> "default" convention).
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows and columns in X.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in X11 and X12. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in X11 and X21. 0 <= Q <= M.
*> \endverbatim
*>
*> \param[in,out] X11
*> \verbatim
*> X11 is REAL array, dimension (LDX11,Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX11
*> \verbatim
*> LDX11 is INTEGER
*> The leading dimension of X11. LDX11 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] X12
*> \verbatim
*> X12 is REAL array, dimension (LDX12,M-Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX12
*> \verbatim
*> LDX12 is INTEGER
*> The leading dimension of X12. LDX12 >= MAX(1,P).
*> \endverbatim
*>
*> \param[in,out] X21
*> \verbatim
*> X21 is REAL array, dimension (LDX21,Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX21
*> \verbatim
*> LDX21 is INTEGER
*> The leading dimension of X11. LDX21 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[in,out] X22
*> \verbatim
*> X22 is REAL array, dimension (LDX22,M-Q)
*> On entry, part of the orthogonal matrix whose CSD is desired.
*> \endverbatim
*>
*> \param[in] LDX22
*> \verbatim
*> LDX22 is INTEGER
*> The leading dimension of X11. LDX22 >= MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is REAL array, dimension (R), in which R =
*> MIN(P,M-P,Q,M-Q).
*> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
*> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*> U1 is REAL array, dimension (P)
*> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
*> MAX(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*> U2 is REAL array, dimension (M-P)
*> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
*> matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
*> MAX(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*> V1T is REAL array, dimension (Q)
*> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
*> matrix V1**T.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
*> MAX(1,Q).
*> \endverbatim
*>
*> \param[out] V2T
*> \verbatim
*> V2T is REAL array, dimension (M-Q)
*> If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
*> matrix V2**T.
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
*> MAX(1,M-Q).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
*> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
*> define the matrix in intermediate bidiagonal-block form
*> remaining after nonconvergence. INFO specifies the number
*> of nonzero PHI's.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the work array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M-MIN(P, M-P, Q, M-Q))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: SBBCSD did not converge. See the description of WORK
*> above for details.
*> \endverbatim
*
*> \par References:
* ================
*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
RECURSIVE SUBROUTINE SORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
$ SIGNS, M, P, Q, X11, LDX11, X12,
$ LDX12, X21, LDX21, X22, LDX22, THETA,
$ U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, WORK, LWORK, IWORK, INFO )
*
* -- LAPACK computational routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
$ LDX21, LDX22, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL THETA( * )
REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
$ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
$ * )
* ..
*
* ===================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0,
$ ZERO = 0.0E+0 )
* ..
* .. Local Arrays ..
REAL DUMMY(1)
* ..
* .. Local Scalars ..
CHARACTER TRANST, SIGNST
INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
$ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
$ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
$ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
$ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
$ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
$ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
$ LORGQRWORKOPT, LWORKMIN, LWORKOPT
LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
$ WANTV1T, WANTV2T
* ..
* .. External Subroutines ..
EXTERNAL SBBCSD, SLACPY, SLAPMR, SLAPMT, SLASCL, SLASET,
$ SORBDB, SORGLQ, SORGQR, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
WANTU1 = LSAME( JOBU1, 'Y' )
WANTU2 = LSAME( JOBU2, 'Y' )
WANTV1T = LSAME( JOBV1T, 'Y' )
WANTV2T = LSAME( JOBV2T, 'Y' )
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
LQUERY = LWORK .EQ. -1
IF( M .LT. 0 ) THEN
INFO = -7
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
INFO = -8
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
INFO = -9
ELSE IF ( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
INFO = -11
ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
INFO = -11
ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
INFO = -13
ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
INFO = -13
ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
INFO = -15
ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
INFO = -15
ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
INFO = -17
ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
INFO = -17
ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
INFO = -20
ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
INFO = -22
ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
INFO = -24
ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
INFO = -26
END IF
*
* Work with transpose if convenient
*
IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
IF( COLMAJOR ) THEN
TRANST = 'T'
ELSE
TRANST = 'N'
END IF
IF( DEFAULTSIGNS ) THEN
SIGNST = 'O'
ELSE
SIGNST = 'D'
END IF
CALL SORCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
$ Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
$ LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
$ U2, LDU2, WORK, LWORK, IWORK, INFO )
RETURN
END IF
*
* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
* convenient
*
IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
IF( DEFAULTSIGNS ) THEN
SIGNST = 'O'
ELSE
SIGNST = 'D'
END IF
CALL SORCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
$ M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
$ LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
$ LDV1T, WORK, LWORK, IWORK, INFO )
RETURN
END IF
*
* Compute workspace
*
IF( INFO .EQ. 0 ) THEN
*
IPHI = 2
ITAUP1 = IPHI + MAX( 1, Q - 1 )
ITAUP2 = ITAUP1 + MAX( 1, P )
ITAUQ1 = ITAUP2 + MAX( 1, M - P )
ITAUQ2 = ITAUQ1 + MAX( 1, Q )
IORGQR = ITAUQ2 + MAX( 1, M - Q )
CALL SORGQR( M-Q, M-Q, M-Q, DUMMY, MAX(1,M-Q), DUMMY, WORK, -1,
$ CHILDINFO )
LORGQRWORKOPT = INT( WORK(1) )
LORGQRWORKMIN = MAX( 1, M - Q )
IORGLQ = ITAUQ2 + MAX( 1, M - Q )
CALL SORGLQ( M-Q, M-Q, M-Q, DUMMY, MAX(1,M-Q), DUMMY, WORK, -1,
$ CHILDINFO )
LORGLQWORKOPT = INT( WORK(1) )
LORGLQWORKMIN = MAX( 1, M - Q )
IORBDB = ITAUQ2 + MAX( 1, M - Q )
CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
$ X21, LDX21, X22, LDX22, DUMMY, DUMMY, DUMMY, DUMMY, DUMMY,
$ DUMMY,WORK,-1,CHILDINFO )
LORBDBWORKOPT = INT( WORK(1) )
LORBDBWORKMIN = LORBDBWORKOPT
IB11D = ITAUQ2 + MAX( 1, M - Q )
IB11E = IB11D + MAX( 1, Q )
IB12D = IB11E + MAX( 1, Q - 1 )
IB12E = IB12D + MAX( 1, Q )
IB21D = IB12E + MAX( 1, Q - 1 )
IB21E = IB21D + MAX( 1, Q )
IB22D = IB21E + MAX( 1, Q - 1 )
IB22E = IB22D + MAX( 1, Q )
IBBCSD = IB22E + MAX( 1, Q - 1 )
CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
$ DUMMY, DUMMY, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, DUMMY, DUMMY, DUMMY, DUMMY, DUMMY, DUMMY,
$ DUMMY, DUMMY, WORK, -1, CHILDINFO )
LBBCSDWORKOPT = INT( WORK(1) )
LBBCSDWORKMIN = LBBCSDWORKOPT
LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
$ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKOPT ) - 1
LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
$ IORBDB + LORBDBWORKOPT, IBBCSD + LBBCSDWORKMIN ) - 1
WORK(1) = MAX(LWORKOPT,LWORKMIN)
*
IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
INFO = -22
ELSE
LORGQRWORK = LWORK - IORGQR + 1
LORGLQWORK = LWORK - IORGLQ + 1
LORBDBWORK = LWORK - IORBDB + 1
LBBCSDWORK = LWORK - IBBCSD + 1
END IF
END IF
*
* Abort if any illegal arguments
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'SORCSD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Transform to bidiagonal block form
*
CALL SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
$ LDX21, X22, LDX22, THETA, WORK(IPHI), WORK(ITAUP1),
$ WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
$ WORK(IORBDB), LORBDBWORK, CHILDINFO )
*
* Accumulate Householder reflectors
*
IF( COLMAJOR ) THEN
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
$ LORGQRWORK, INFO)
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
$ LDV1T )
V1T(1, 1) = ONE
DO J = 2, Q
V1T(1,J) = ZERO
V1T(J,1) = ZERO
END DO
CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
CALL SLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
CALL SLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
$ V2T(P+1,P+1), LDV2T )
CALL SORGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
ELSE
IF( WANTU1 .AND. P .GT. 0 ) THEN
CALL SLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
CALL SORGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
$ LORGLQWORK, INFO)
END IF
IF( WANTU2 .AND. M-P .GT. 0 ) THEN
CALL SLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
CALL SORGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
$ WORK(IORGLQ), LORGLQWORK, INFO )
END IF
IF( WANTV1T .AND. Q .GT. 0 ) THEN
CALL SLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
$ LDV1T )
V1T(1, 1) = ONE
DO J = 2, Q
V1T(1,J) = ZERO
V1T(J,1) = ZERO
END DO
CALL SORGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
CALL SLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
CALL SLACPY( 'L', M-P-Q, M-P-Q, X22(P+1,Q+1), LDX22,
$ V2T(P+1,P+1), LDV2T )
CALL SORGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
$ WORK(IORGQR), LORGQRWORK, INFO )
END IF
END IF
*
* Compute the CSD of the matrix in bidiagonal-block form
*
CALL SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
$ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
$ LDV2T, WORK(IB11D), WORK(IB11E), WORK(IB12D),
$ WORK(IB12E), WORK(IB21D), WORK(IB21E), WORK(IB22D),
$ WORK(IB22E), WORK(IBBCSD), LBBCSDWORK, INFO )
*
* Permute rows and columns to place identity submatrices in top-
* left corner of (1,1)-block and/or bottom-right corner of (1,2)-
* block and/or bottom-right corner of (2,1)-block and/or top-left
* corner of (2,2)-block
*
IF( Q .GT. 0 .AND. WANTU2 ) THEN
DO I = 1, Q
IWORK(I) = M - P - Q + I
END DO
DO I = Q + 1, M - P
IWORK(I) = I - Q
END DO
IF( COLMAJOR ) THEN
CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
ELSE
CALL SLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
END IF
END IF
IF( M .GT. 0 .AND. WANTV2T ) THEN
DO I = 1, P
IWORK(I) = M - P - Q + I
END DO
DO I = P + 1, M - Q
IWORK(I) = I - P
END DO
IF( .NOT. COLMAJOR ) THEN
CALL SLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
ELSE
CALL SLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
END IF
END IF
*
RETURN
*
* End SORCSD
*
END
|