summaryrefslogtreecommitdiff
path: root/SRC/slauu2.f
blob: db11bc6c8574e9b49a318c2f0b81e71b611676a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
*> \brief \b SLAUU2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE SLAUU2( UPLO, N, A, LDA, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SLAUU2 computes the product U * U**T or L**T * L, where the triangular
*> factor U or L is stored in the upper or lower triangular part of
*> the array A.
*>
*> If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
*> overwriting the factor U in A.
*> If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
*> overwriting the factor L in A.
*>
*> This is the unblocked form of the algorithm, calling Level 2 BLAS.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the triangular factor stored in the array A
*>          is upper or lower triangular:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the triangular factor U or L.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the triangular factor U or L.
*>          On exit, if UPLO = 'U', the upper triangle of A is
*>          overwritten with the upper triangle of the product U * U**T;
*>          if UPLO = 'L', the lower triangle of A is overwritten with
*>          the lower triangle of the product L**T * L.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE SLAUU2( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      REAL               AII
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAUU2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Compute the product U * U**T.
*
         DO 10 I = 1, N
            AII = A( I, I )
            IF( I.LT.N ) THEN
               A( I, I ) = SDOT( N-I+1, A( I, I ), LDA, A( I, I ), LDA )
               CALL SGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
     $                     LDA, A( I, I+1 ), LDA, AII, A( 1, I ), 1 )
            ELSE
               CALL SSCAL( I, AII, A( 1, I ), 1 )
            END IF
   10    CONTINUE
*
      ELSE
*
*        Compute the product L**T * L.
*
         DO 20 I = 1, N
            AII = A( I, I )
            IF( I.LT.N ) THEN
               A( I, I ) = SDOT( N-I+1, A( I, I ), 1, A( I, I ), 1 )
               CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
     $                     A( I+1, I ), 1, AII, A( I, 1 ), LDA )
            ELSE
               CALL SSCAL( I, AII, A( I, 1 ), LDA )
            END IF
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of SLAUU2
*
      END