summaryrefslogtreecommitdiff
path: root/SRC/slasq6.f
blob: e56813bb1752d37246b915860b302f57749ffc70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
*> \brief \b SLASQ6 computes one dqd transform in ping-pong form. Used by sbdsqr and sstegr.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SLASQ6 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq6.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq6.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq6.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN,
*                          DNM1, DNM2 )
* 
*       .. Scalar Arguments ..
*       INTEGER            I0, N0, PP
*       REAL               DMIN, DMIN1, DMIN2, DN, DNM1, DNM2
*       ..
*       .. Array Arguments ..
*       REAL               Z( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLASQ6 computes one dqd (shift equal to zero) transform in
*> ping-pong form, with protection against underflow and overflow.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] I0
*> \verbatim
*>          I0 is INTEGER
*>        First index.
*> \endverbatim
*>
*> \param[in] N0
*> \verbatim
*>          N0 is INTEGER
*>        Last index.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is REAL array, dimension ( 4*N )
*>        Z holds the qd array. EMIN is stored in Z(4*N0) to avoid
*>        an extra argument.
*> \endverbatim
*>
*> \param[in] PP
*> \verbatim
*>          PP is INTEGER
*>        PP=0 for ping, PP=1 for pong.
*> \endverbatim
*>
*> \param[out] DMIN
*> \verbatim
*>          DMIN is REAL
*>        Minimum value of d.
*> \endverbatim
*>
*> \param[out] DMIN1
*> \verbatim
*>          DMIN1 is REAL
*>        Minimum value of d, excluding D( N0 ).
*> \endverbatim
*>
*> \param[out] DMIN2
*> \verbatim
*>          DMIN2 is REAL
*>        Minimum value of d, excluding D( N0 ) and D( N0-1 ).
*> \endverbatim
*>
*> \param[out] DN
*> \verbatim
*>          DN is REAL
*>        d(N0), the last value of d.
*> \endverbatim
*>
*> \param[out] DNM1
*> \verbatim
*>          DNM1 is REAL
*>        d(N0-1).
*> \endverbatim
*>
*> \param[out] DNM2
*> \verbatim
*>          DNM2 is REAL
*>        d(N0-2).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN,
     $                   DNM1, DNM2 )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      INTEGER            I0, N0, PP
      REAL               DMIN, DMIN1, DMIN2, DN, DNM1, DNM2
*     ..
*     .. Array Arguments ..
      REAL               Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameter ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J4, J4P2
      REAL               D, EMIN, SAFMIN, TEMP
*     ..
*     .. External Function ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( ( N0-I0-1 ).LE.0 )
     $   RETURN
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      J4 = 4*I0 + PP - 3
      EMIN = Z( J4+4 ) 
      D = Z( J4 )
      DMIN = D
*
      IF( PP.EQ.0 ) THEN
         DO 10 J4 = 4*I0, 4*( N0-3 ), 4
            Z( J4-2 ) = D + Z( J4-1 ) 
            IF( Z( J4-2 ).EQ.ZERO ) THEN
               Z( J4 ) = ZERO
               D = Z( J4+1 )
               DMIN = D
               EMIN = ZERO
            ELSE IF( SAFMIN*Z( J4+1 ).LT.Z( J4-2 ) .AND.
     $               SAFMIN*Z( J4-2 ).LT.Z( J4+1 ) ) THEN
               TEMP = Z( J4+1 ) / Z( J4-2 )
               Z( J4 ) = Z( J4-1 )*TEMP
               D = D*TEMP
            ELSE 
               Z( J4 ) = Z( J4+1 )*( Z( J4-1 ) / Z( J4-2 ) )
               D = Z( J4+1 )*( D / Z( J4-2 ) )
            END IF
            DMIN = MIN( DMIN, D )
            EMIN = MIN( EMIN, Z( J4 ) )
   10    CONTINUE
      ELSE
         DO 20 J4 = 4*I0, 4*( N0-3 ), 4
            Z( J4-3 ) = D + Z( J4 ) 
            IF( Z( J4-3 ).EQ.ZERO ) THEN
               Z( J4-1 ) = ZERO
               D = Z( J4+2 )
               DMIN = D
               EMIN = ZERO
            ELSE IF( SAFMIN*Z( J4+2 ).LT.Z( J4-3 ) .AND.
     $               SAFMIN*Z( J4-3 ).LT.Z( J4+2 ) ) THEN
               TEMP = Z( J4+2 ) / Z( J4-3 )
               Z( J4-1 ) = Z( J4 )*TEMP
               D = D*TEMP
            ELSE 
               Z( J4-1 ) = Z( J4+2 )*( Z( J4 ) / Z( J4-3 ) )
               D = Z( J4+2 )*( D / Z( J4-3 ) )
            END IF
            DMIN = MIN( DMIN, D )
            EMIN = MIN( EMIN, Z( J4-1 ) )
   20    CONTINUE
      END IF
*
*     Unroll last two steps. 
*
      DNM2 = D
      DMIN2 = DMIN
      J4 = 4*( N0-2 ) - PP
      J4P2 = J4 + 2*PP - 1
      Z( J4-2 ) = DNM2 + Z( J4P2 )
      IF( Z( J4-2 ).EQ.ZERO ) THEN
         Z( J4 ) = ZERO
         DNM1 = Z( J4P2+2 )
         DMIN = DNM1
         EMIN = ZERO
      ELSE IF( SAFMIN*Z( J4P2+2 ).LT.Z( J4-2 ) .AND.
     $         SAFMIN*Z( J4-2 ).LT.Z( J4P2+2 ) ) THEN
         TEMP = Z( J4P2+2 ) / Z( J4-2 )
         Z( J4 ) = Z( J4P2 )*TEMP
         DNM1 = DNM2*TEMP
      ELSE
         Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
         DNM1 = Z( J4P2+2 )*( DNM2 / Z( J4-2 ) )
      END IF
      DMIN = MIN( DMIN, DNM1 )
*
      DMIN1 = DMIN
      J4 = J4 + 4
      J4P2 = J4 + 2*PP - 1
      Z( J4-2 ) = DNM1 + Z( J4P2 )
      IF( Z( J4-2 ).EQ.ZERO ) THEN
         Z( J4 ) = ZERO
         DN = Z( J4P2+2 )
         DMIN = DN
         EMIN = ZERO
      ELSE IF( SAFMIN*Z( J4P2+2 ).LT.Z( J4-2 ) .AND.
     $         SAFMIN*Z( J4-2 ).LT.Z( J4P2+2 ) ) THEN
         TEMP = Z( J4P2+2 ) / Z( J4-2 )
         Z( J4 ) = Z( J4P2 )*TEMP
         DN = DNM1*TEMP
      ELSE
         Z( J4 ) = Z( J4P2+2 )*( Z( J4P2 ) / Z( J4-2 ) )
         DN = Z( J4P2+2 )*( DNM1 / Z( J4-2 ) )
      END IF
      DMIN = MIN( DMIN, DN )
*
      Z( J4+2 ) = DN
      Z( 4*N0-PP ) = EMIN
      RETURN
*
*     End of SLASQ6
*
      END