summaryrefslogtreecommitdiff
path: root/SRC/slasq3.f
blob: 64badbb1371804ebc897fae50600d1a4f74d6392 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
*> \brief \b SLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SLASQ3 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq3.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq3.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq3.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
*                          ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
*                          DN2, G, TAU )
* 
*       .. Scalar Arguments ..
*       LOGICAL            IEEE
*       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
*       REAL               DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
*      $                   QMAX, SIGMA, TAU
*       ..
*       .. Array Arguments ..
*       REAL               Z( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
*> In case of failure it changes shifts, and tries again until output
*> is positive.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] I0
*> \verbatim
*>          I0 is INTEGER
*>         First index.
*> \endverbatim
*>
*> \param[in,out] N0
*> \verbatim
*>          N0 is INTEGER
*>         Last index.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is REAL array, dimension ( 4*N )
*>         Z holds the qd array.
*> \endverbatim
*>
*> \param[in,out] PP
*> \verbatim
*>          PP is INTEGER
*>         PP=0 for ping, PP=1 for pong.
*>         PP=2 indicates that flipping was applied to the Z array   
*>         and that the initial tests for deflation should not be 
*>         performed.
*> \endverbatim
*>
*> \param[out] DMIN
*> \verbatim
*>          DMIN is REAL
*>         Minimum value of d.
*> \endverbatim
*>
*> \param[out] SIGMA
*> \verbatim
*>          SIGMA is REAL
*>         Sum of shifts used in current segment.
*> \endverbatim
*>
*> \param[in,out] DESIG
*> \verbatim
*>          DESIG is REAL
*>         Lower order part of SIGMA
*> \endverbatim
*>
*> \param[in] QMAX
*> \verbatim
*>          QMAX is REAL
*>         Maximum value of q.
*> \endverbatim
*>
*> \param[out] NFAIL
*> \verbatim
*>          NFAIL is INTEGER
*>         Number of times shift was too big.
*> \endverbatim
*>
*> \param[out] ITER
*> \verbatim
*>          ITER is INTEGER
*>         Number of iterations.
*> \endverbatim
*>
*> \param[out] NDIV
*> \verbatim
*>          NDIV is INTEGER
*>         Number of divisions.
*> \endverbatim
*>
*> \param[in] IEEE
*> \verbatim
*>          IEEE is LOGICAL
*>         Flag for IEEE or non IEEE arithmetic (passed to SLASQ5).
*> \endverbatim
*>
*> \param[in,out] TTYPE
*> \verbatim
*>          TTYPE is INTEGER
*>         Shift type.
*> \endverbatim
*>
*> \param[in,out] DMIN1
*> \verbatim
*>          DMIN1 is REAL
*> \endverbatim
*>
*> \param[in,out] DMIN2
*> \verbatim
*>          DMIN2 is REAL
*> \endverbatim
*>
*> \param[in,out] DN
*> \verbatim
*>          DN is REAL
*> \endverbatim
*>
*> \param[in,out] DN1
*> \verbatim
*>          DN1 is REAL
*> \endverbatim
*>
*> \param[in,out] DN2
*> \verbatim
*>          DN2 is REAL
*> \endverbatim
*>
*> \param[in,out] G
*> \verbatim
*>          G is REAL
*> \endverbatim
*>
*> \param[in,out] TAU
*> \verbatim
*>          TAU is REAL
*>
*>         These are passed as arguments in order to save their values
*>         between calls to SLASQ3.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date September 2012
*
*> \ingroup auxOTHERcomputational
*
*  =====================================================================
      SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
     $                   DN2, G, TAU )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
      REAL               DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
     $                   QMAX, SIGMA, TAU
*     ..
*     .. Array Arguments ..
      REAL               Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               CBIAS
      PARAMETER          ( CBIAS = 1.50E0 )
      REAL               ZERO, QURTR, HALF, ONE, TWO, HUNDRD
      PARAMETER          ( ZERO = 0.0E0, QURTR = 0.250E0, HALF = 0.5E0,
     $                     ONE = 1.0E0, TWO = 2.0E0, HUNDRD = 100.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
      REAL               EPS, S, T, TEMP, TOL, TOL2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASQ4, SLASQ5, SLASQ6
*     ..
*     .. External Function ..
      REAL               SLAMCH
      LOGICAL            SISNAN
      EXTERNAL           SISNAN, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      N0IN = N0
      EPS = SLAMCH( 'Precision' )
      TOL = EPS*HUNDRD
      TOL2 = TOL**2
*
*     Check for deflation.
*
   10 CONTINUE
*
      IF( N0.LT.I0 )
     $   RETURN
      IF( N0.EQ.I0 )
     $   GO TO 20
      NN = 4*N0 + PP
      IF( N0.EQ.( I0+1 ) )
     $   GO TO 40
*
*     Check whether E(N0-1) is negligible, 1 eigenvalue.
*
      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
     $   GO TO 30
*
   20 CONTINUE
*
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
      N0 = N0 - 1
      GO TO 10
*
*     Check  whether E(N0-2) is negligible, 2 eigenvalues.
*
   30 CONTINUE
*
      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
     $   GO TO 50
*
   40 CONTINUE
*
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
         S = Z( NN-3 )
         Z( NN-3 ) = Z( NN-7 )
         Z( NN-7 ) = S
      END IF
      T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2.AND.T.NE.ZERO ) THEN
         S = Z( NN-3 )*( Z( NN-5 ) / T )
         IF( S.LE.T ) THEN
            S = Z( NN-3 )*( Z( NN-5 ) /
     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
         ELSE
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
         END IF
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
         Z( NN-7 ) = T
      END IF
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
      N0 = N0 - 2
      GO TO 10
*
   50 CONTINUE
      IF( PP.EQ.2 ) 
     $   PP = 0
*
*     Reverse the qd-array, if warranted.
*
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
            IPN4 = 4*( I0+N0 )
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
               TEMP = Z( J4-3 )
               Z( J4-3 ) = Z( IPN4-J4-3 )
               Z( IPN4-J4-3 ) = TEMP
               TEMP = Z( J4-2 )
               Z( J4-2 ) = Z( IPN4-J4-2 )
               Z( IPN4-J4-2 ) = TEMP
               TEMP = Z( J4-1 )
               Z( J4-1 ) = Z( IPN4-J4-5 )
               Z( IPN4-J4-5 ) = TEMP
               TEMP = Z( J4 )
               Z( J4 ) = Z( IPN4-J4-4 )
               Z( IPN4-J4-4 ) = TEMP
   60       CONTINUE
            IF( N0-I0.LE.4 ) THEN
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
               Z( 4*N0-PP ) = Z( 4*I0-PP )
            END IF
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
     $                            Z( 4*I0+PP+3 ) )
            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
     $                          Z( 4*I0-PP+4 ) )
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
            DMIN = -ZERO
         END IF
      END IF
*
*     Choose a shift.
*
      CALL SLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
     $             DN2, TAU, TTYPE, G )
*
*     Call dqds until DMIN > 0.
*
   70 CONTINUE
*
      CALL SLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
     $             DN1, DN2, IEEE, EPS )
*
      NDIV = NDIV + ( N0-I0+2 )
      ITER = ITER + 1
*
*     Check status.
*
      IF( DMIN.GE.ZERO .AND. DMIN1.GE.ZERO ) THEN
*
*        Success.
*
         GO TO 90
*
      ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND. 
     $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
     $         ABS( DN ).LT.TOL*SIGMA ) THEN
*
*        Convergence hidden by negative DN.
*
         Z( 4*( N0-1 )-PP+2 ) = ZERO
         DMIN = ZERO
         GO TO 90
      ELSE IF( DMIN.LT.ZERO ) THEN
*
*        TAU too big. Select new TAU and try again.
*
         NFAIL = NFAIL + 1
         IF( TTYPE.LT.-22 ) THEN
*
*           Failed twice. Play it safe.
*
            TAU = ZERO
         ELSE IF( DMIN1.GT.ZERO ) THEN
*
*           Late failure. Gives excellent shift.
*
            TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
            TTYPE = TTYPE - 11
         ELSE
*
*           Early failure. Divide by 4.
*
            TAU = QURTR*TAU
            TTYPE = TTYPE - 12
         END IF
         GO TO 70
      ELSE IF( SISNAN( DMIN ) ) THEN
*
*        NaN.
*
         IF( TAU.EQ.ZERO ) THEN
            GO TO 80
         ELSE
            TAU = ZERO
            GO TO 70
         END IF
      ELSE
*            
*        Possible underflow. Play it safe.
*
         GO TO 80
      END IF
*
*     Risk of underflow.
*
   80 CONTINUE
      CALL SLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
      NDIV = NDIV + ( N0-I0+2 )
      ITER = ITER + 1
      TAU = ZERO
*
   90 CONTINUE
      IF( TAU.LT.SIGMA ) THEN
         DESIG = DESIG + TAU
         T = SIGMA + DESIG
         DESIG = DESIG - ( T-SIGMA )
      ELSE
         T = SIGMA + TAU
         DESIG = SIGMA - ( T-TAU ) + DESIG
      END IF
      SIGMA = T
*
      RETURN
*
*     End of SLASQ3
*
      END