summaryrefslogtreecommitdiff
path: root/SRC/slasq1.f
blob: 5a063a7c989cb95d8bb292a57c1cc4b364aa58ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
*
*  -- LAPACK routine (version 3.2)                                    --
*
*  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
*  -- Laboratory and Beresford Parlett of the Univ. of California at  --
*  -- Berkeley                                                        --
*  -- November 2008                                                   --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASQ1 computes the singular values of a real N-by-N bidiagonal
*  matrix with diagonal D and off-diagonal E. The singular values
*  are computed to high relative accuracy, in the absence of
*  denormalization, underflow and overflow. The algorithm was first
*  presented in
*
*  "Accurate singular values and differential qd algorithms" by K. V.
*  Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
*  1994,
*
*  and the present implementation is described in "An implementation of
*  the dqds Algorithm (Positive Case)", LAPACK Working Note.
*
*  Arguments
*  =========
*
*  N     (input) INTEGER
*        The number of rows and columns in the matrix. N >= 0.
*
*  D     (input/output) REAL array, dimension (N)
*        On entry, D contains the diagonal elements of the
*        bidiagonal matrix whose SVD is desired. On normal exit,
*        D contains the singular values in decreasing order.
*
*  E     (input/output) REAL array, dimension (N)
*        On entry, elements E(1:N-1) contain the off-diagonal elements
*        of the bidiagonal matrix whose SVD is desired.
*        On exit, E is overwritten.
*
*  WORK  (workspace) REAL array, dimension (4*N)
*
*  INFO  (output) INTEGER
*        = 0: successful exit
*        < 0: if INFO = -i, the i-th argument had an illegal value
*        > 0: the algorithm failed
*             = 1, a split was marked by a positive value in E
*             = 2, current block of Z not diagonalized after 30*N
*                  iterations (in inner while loop)
*             = 3, termination criterion of outer while loop not met 
*                  (program created more than N unreduced blocks)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO
      REAL               EPS, SCALE, SAFMIN, SIGMN, SIGMX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLAS2, SLASCL, SLASQ2, SLASRT, XERBLA
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -2
         CALL XERBLA( 'SLASQ1', -INFO )
         RETURN
      ELSE IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         D( 1 ) = ABS( D( 1 ) )
         RETURN
      ELSE IF( N.EQ.2 ) THEN
         CALL SLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
         D( 1 ) = SIGMX
         D( 2 ) = SIGMN
         RETURN
      END IF
*
*     Estimate the largest singular value.
*
      SIGMX = ZERO
      DO 10 I = 1, N - 1
         D( I ) = ABS( D( I ) )
         SIGMX = MAX( SIGMX, ABS( E( I ) ) )
   10 CONTINUE
      D( N ) = ABS( D( N ) )
*
*     Early return if SIGMX is zero (matrix is already diagonal).
*
      IF( SIGMX.EQ.ZERO ) THEN
         CALL SLASRT( 'D', N, D, IINFO )
         RETURN
      END IF
*
      DO 20 I = 1, N
         SIGMX = MAX( SIGMX, D( I ) )
   20 CONTINUE
*
*     Copy D and E into WORK (in the Z format) and scale (squaring the
*     input data makes scaling by a power of the radix pointless).
*
      EPS = SLAMCH( 'Precision' )
      SAFMIN = SLAMCH( 'Safe minimum' )
      SCALE = SQRT( EPS / SAFMIN )
      CALL SCOPY( N, D, 1, WORK( 1 ), 2 )
      CALL SCOPY( N-1, E, 1, WORK( 2 ), 2 )
      CALL SLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1,
     $             IINFO )
*         
*     Compute the q's and e's.
*
      DO 30 I = 1, 2*N - 1
         WORK( I ) = WORK( I )**2
   30 CONTINUE
      WORK( 2*N ) = ZERO
*
      CALL SLASQ2( N, WORK, INFO )
*
      IF( INFO.EQ.0 ) THEN
         DO 40 I = 1, N
            D( I ) = SQRT( WORK( I ) )
   40    CONTINUE
         CALL SLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
      END IF
*
      RETURN
*
*     End of SLASQ1
*
      END