1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
|
*> \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by sbdsdc.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLASD7 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
* C, S, INFO )
*
* .. Scalar Arguments ..
* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
* $ NR, SQRE
* REAL ALPHA, BETA, C, S
* ..
* .. Array Arguments ..
* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
* $ IDXQ( * ), PERM( * )
* REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
* $ ZW( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLASD7 merges the two sets of singular values together into a single
*> sorted set. Then it tries to deflate the size of the problem. There
*> are two ways in which deflation can occur: when two or more singular
*> values are close together or if there is a tiny entry in the Z
*> vector. For each such occurrence the order of the related
*> secular equation problem is reduced by one.
*>
*> SLASD7 is called from SLASD6.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*> ICOMPQ is INTEGER
*> Specifies whether singular vectors are to be computed
*> in compact form, as follows:
*> = 0: Compute singular values only.
*> = 1: Compute singular vectors of upper
*> bidiagonal matrix in compact form.
*> \endverbatim
*>
*> \param[in] NL
*> \verbatim
*> NL is INTEGER
*> The row dimension of the upper block. NL >= 1.
*> \endverbatim
*>
*> \param[in] NR
*> \verbatim
*> NR is INTEGER
*> The row dimension of the lower block. NR >= 1.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*>
*> The bidiagonal matrix has
*> N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[out] K
*> \verbatim
*> K is INTEGER
*> Contains the dimension of the non-deflated matrix, this is
*> the order of the related secular equation. 1 <= K <=N.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension ( N )
*> On entry D contains the singular values of the two submatrices
*> to be combined. On exit D contains the trailing (N-K) updated
*> singular values (those which were deflated) sorted into
*> increasing order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is REAL array, dimension ( M )
*> On exit Z contains the updating row vector in the secular
*> equation.
*> \endverbatim
*>
*> \param[out] ZW
*> \verbatim
*> ZW is REAL array, dimension ( M )
*> Workspace for Z.
*> \endverbatim
*>
*> \param[in,out] VF
*> \verbatim
*> VF is REAL array, dimension ( M )
*> On entry, VF(1:NL+1) contains the first components of all
*> right singular vectors of the upper block; and VF(NL+2:M)
*> contains the first components of all right singular vectors
*> of the lower block. On exit, VF contains the first components
*> of all right singular vectors of the bidiagonal matrix.
*> \endverbatim
*>
*> \param[out] VFW
*> \verbatim
*> VFW is REAL array, dimension ( M )
*> Workspace for VF.
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*> VL is REAL array, dimension ( M )
*> On entry, VL(1:NL+1) contains the last components of all
*> right singular vectors of the upper block; and VL(NL+2:M)
*> contains the last components of all right singular vectors
*> of the lower block. On exit, VL contains the last components
*> of all right singular vectors of the bidiagonal matrix.
*> \endverbatim
*>
*> \param[out] VLW
*> \verbatim
*> VLW is REAL array, dimension ( M )
*> Workspace for VL.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> Contains the diagonal element associated with the added row.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL
*> Contains the off-diagonal element associated with the added
*> row.
*> \endverbatim
*>
*> \param[out] DSIGMA
*> \verbatim
*> DSIGMA is REAL array, dimension ( N )
*> Contains a copy of the diagonal elements (K-1 singular values
*> and one zero) in the secular equation.
*> \endverbatim
*>
*> \param[out] IDX
*> \verbatim
*> IDX is INTEGER array, dimension ( N )
*> This will contain the permutation used to sort the contents of
*> D into ascending order.
*> \endverbatim
*>
*> \param[out] IDXP
*> \verbatim
*> IDXP is INTEGER array, dimension ( N )
*> This will contain the permutation used to place deflated
*> values of D at the end of the array. On output IDXP(2:K)
*> points to the nondeflated D-values and IDXP(K+1:N)
*> points to the deflated singular values.
*> \endverbatim
*>
*> \param[in] IDXQ
*> \verbatim
*> IDXQ is INTEGER array, dimension ( N )
*> This contains the permutation which separately sorts the two
*> sub-problems in D into ascending order. Note that entries in
*> the first half of this permutation must first be moved one
*> position backward; and entries in the second half
*> must first have NL+1 added to their values.
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*> PERM is INTEGER array, dimension ( N )
*> The permutations (from deflation and sorting) to be applied
*> to each singular block. Not referenced if ICOMPQ = 0.
*> \endverbatim
*>
*> \param[out] GIVPTR
*> \verbatim
*> GIVPTR is INTEGER
*> The number of Givens rotations which took place in this
*> subproblem. Not referenced if ICOMPQ = 0.
*> \endverbatim
*>
*> \param[out] GIVCOL
*> \verbatim
*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
*> Each pair of numbers indicates a pair of columns to take place
*> in a Givens rotation. Not referenced if ICOMPQ = 0.
*> \endverbatim
*>
*> \param[in] LDGCOL
*> \verbatim
*> LDGCOL is INTEGER
*> The leading dimension of GIVCOL, must be at least N.
*> \endverbatim
*>
*> \param[out] GIVNUM
*> \verbatim
*> GIVNUM is REAL array, dimension ( LDGNUM, 2 )
*> Each number indicates the C or S value to be used in the
*> corresponding Givens rotation. Not referenced if ICOMPQ = 0.
*> \endverbatim
*>
*> \param[in] LDGNUM
*> \verbatim
*> LDGNUM is INTEGER
*> The leading dimension of GIVNUM, must be at least N.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is REAL
*> C contains garbage if SQRE =0 and the C-value of a Givens
*> rotation related to the right null space if SQRE = 1.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL
*> S contains garbage if SQRE =0 and the S-value of a Givens
*> rotation related to the right null space if SQRE = 1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
* =====================================================================
SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
$ VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
$ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
$ C, S, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
$ NR, SQRE
REAL ALPHA, BETA, C, S
* ..
* .. Array Arguments ..
INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
$ IDXQ( * ), PERM( * )
REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
$ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
$ ZW( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO, EIGHT
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
$ EIGHT = 8.0E+0 )
* ..
* .. Local Scalars ..
*
INTEGER I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
$ NLP1, NLP2
REAL EPS, HLFTOL, TAU, TOL, Z1
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLAMRG, SROT, XERBLA
* ..
* .. External Functions ..
REAL SLAMCH, SLAPY2
EXTERNAL SLAMCH, SLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
N = NL + NR + 1
M = N + SQRE
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( NL.LT.1 ) THEN
INFO = -2
ELSE IF( NR.LT.1 ) THEN
INFO = -3
ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
INFO = -4
ELSE IF( LDGCOL.LT.N ) THEN
INFO = -22
ELSE IF( LDGNUM.LT.N ) THEN
INFO = -24
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SLASD7', -INFO )
RETURN
END IF
*
NLP1 = NL + 1
NLP2 = NL + 2
IF( ICOMPQ.EQ.1 ) THEN
GIVPTR = 0
END IF
*
* Generate the first part of the vector Z and move the singular
* values in the first part of D one position backward.
*
Z1 = ALPHA*VL( NLP1 )
VL( NLP1 ) = ZERO
TAU = VF( NLP1 )
DO 10 I = NL, 1, -1
Z( I+1 ) = ALPHA*VL( I )
VL( I ) = ZERO
VF( I+1 ) = VF( I )
D( I+1 ) = D( I )
IDXQ( I+1 ) = IDXQ( I ) + 1
10 CONTINUE
VF( 1 ) = TAU
*
* Generate the second part of the vector Z.
*
DO 20 I = NLP2, M
Z( I ) = BETA*VF( I )
VF( I ) = ZERO
20 CONTINUE
*
* Sort the singular values into increasing order
*
DO 30 I = NLP2, N
IDXQ( I ) = IDXQ( I ) + NLP1
30 CONTINUE
*
* DSIGMA, IDXC, IDXC, and ZW are used as storage space.
*
DO 40 I = 2, N
DSIGMA( I ) = D( IDXQ( I ) )
ZW( I ) = Z( IDXQ( I ) )
VFW( I ) = VF( IDXQ( I ) )
VLW( I ) = VL( IDXQ( I ) )
40 CONTINUE
*
CALL SLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
*
DO 50 I = 2, N
IDXI = 1 + IDX( I )
D( I ) = DSIGMA( IDXI )
Z( I ) = ZW( IDXI )
VF( I ) = VFW( IDXI )
VL( I ) = VLW( IDXI )
50 CONTINUE
*
* Calculate the allowable deflation tolerence
*
EPS = SLAMCH( 'Epsilon' )
TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
*
* There are 2 kinds of deflation -- first a value in the z-vector
* is small, second two (or more) singular values are very close
* together (their difference is small).
*
* If the value in the z-vector is small, we simply permute the
* array so that the corresponding singular value is moved to the
* end.
*
* If two values in the D-vector are close, we perform a two-sided
* rotation designed to make one of the corresponding z-vector
* entries zero, and then permute the array so that the deflated
* singular value is moved to the end.
*
* If there are multiple singular values then the problem deflates.
* Here the number of equal singular values are found. As each equal
* singular value is found, an elementary reflector is computed to
* rotate the corresponding singular subspace so that the
* corresponding components of Z are zero in this new basis.
*
K = 1
K2 = N + 1
DO 60 J = 2, N
IF( ABS( Z( J ) ).LE.TOL ) THEN
*
* Deflate due to small z component.
*
K2 = K2 - 1
IDXP( K2 ) = J
IF( J.EQ.N )
$ GO TO 100
ELSE
JPREV = J
GO TO 70
END IF
60 CONTINUE
70 CONTINUE
J = JPREV
80 CONTINUE
J = J + 1
IF( J.GT.N )
$ GO TO 90
IF( ABS( Z( J ) ).LE.TOL ) THEN
*
* Deflate due to small z component.
*
K2 = K2 - 1
IDXP( K2 ) = J
ELSE
*
* Check if singular values are close enough to allow deflation.
*
IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
*
* Deflation is possible.
*
S = Z( JPREV )
C = Z( J )
*
* Find sqrt(a**2+b**2) without overflow or
* destructive underflow.
*
TAU = SLAPY2( C, S )
Z( J ) = TAU
Z( JPREV ) = ZERO
C = C / TAU
S = -S / TAU
*
* Record the appropriate Givens rotation
*
IF( ICOMPQ.EQ.1 ) THEN
GIVPTR = GIVPTR + 1
IDXJP = IDXQ( IDX( JPREV )+1 )
IDXJ = IDXQ( IDX( J )+1 )
IF( IDXJP.LE.NLP1 ) THEN
IDXJP = IDXJP - 1
END IF
IF( IDXJ.LE.NLP1 ) THEN
IDXJ = IDXJ - 1
END IF
GIVCOL( GIVPTR, 2 ) = IDXJP
GIVCOL( GIVPTR, 1 ) = IDXJ
GIVNUM( GIVPTR, 2 ) = C
GIVNUM( GIVPTR, 1 ) = S
END IF
CALL SROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
CALL SROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
K2 = K2 - 1
IDXP( K2 ) = JPREV
JPREV = J
ELSE
K = K + 1
ZW( K ) = Z( JPREV )
DSIGMA( K ) = D( JPREV )
IDXP( K ) = JPREV
JPREV = J
END IF
END IF
GO TO 80
90 CONTINUE
*
* Record the last singular value.
*
K = K + 1
ZW( K ) = Z( JPREV )
DSIGMA( K ) = D( JPREV )
IDXP( K ) = JPREV
*
100 CONTINUE
*
* Sort the singular values into DSIGMA. The singular values which
* were not deflated go into the first K slots of DSIGMA, except
* that DSIGMA(1) is treated separately.
*
DO 110 J = 2, N
JP = IDXP( J )
DSIGMA( J ) = D( JP )
VFW( J ) = VF( JP )
VLW( J ) = VL( JP )
110 CONTINUE
IF( ICOMPQ.EQ.1 ) THEN
DO 120 J = 2, N
JP = IDXP( J )
PERM( J ) = IDXQ( IDX( JP )+1 )
IF( PERM( J ).LE.NLP1 ) THEN
PERM( J ) = PERM( J ) - 1
END IF
120 CONTINUE
END IF
*
* The deflated singular values go back into the last N - K slots of
* D.
*
CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
*
* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
* VL(M).
*
DSIGMA( 1 ) = ZERO
HLFTOL = TOL / TWO
IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
$ DSIGMA( 2 ) = HLFTOL
IF( M.GT.N ) THEN
Z( 1 ) = SLAPY2( Z1, Z( M ) )
IF( Z( 1 ).LE.TOL ) THEN
C = ONE
S = ZERO
Z( 1 ) = TOL
ELSE
C = Z1 / Z( 1 )
S = -Z( M ) / Z( 1 )
END IF
CALL SROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
CALL SROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
ELSE
IF( ABS( Z1 ).LE.TOL ) THEN
Z( 1 ) = TOL
ELSE
Z( 1 ) = Z1
END IF
END IF
*
* Restore Z, VF, and VL.
*
CALL SCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
CALL SCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
CALL SCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
*
RETURN
*
* End of SLASD7
*
END
|