summaryrefslogtreecommitdiff
path: root/SRC/slasd2.f
blob: 2b38503a62dd347921095a15ebeb9aa0bcbc55de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
*> \brief \b SLASD2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition
*  ==========
*
*       SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
*                          LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
*                          IDXC, IDXQ, COLTYP, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
*       REAL               ALPHA, BETA
*       ..
*       .. Array Arguments ..
*       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
*      $                   IDXQ( * )
*       REAL               D( * ), DSIGMA( * ), U( LDU, * ),
*      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
*      $                   Z( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SLASD2 merges the two sets of singular values together into a single
*> sorted set.  Then it tries to deflate the size of the problem.
*> There are two ways in which deflation can occur:  when two or more
*> singular values are close together or if there is a tiny entry in the
*> Z vector.  For each such occurrence the order of the related secular
*> equation problem is reduced by one.
*>
*> SLASD2 is called from SLASD1.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] NL
*> \verbatim
*>          NL is INTEGER
*>         The row dimension of the upper block.  NL >= 1.
*> \endverbatim
*>
*> \param[in] NR
*> \verbatim
*>          NR is INTEGER
*>         The row dimension of the lower block.  NR >= 1.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*>          SQRE is INTEGER
*>         = 0: the lower block is an NR-by-NR square matrix.
*>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*> \endverbatim
*> \verbatim
*>         The bidiagonal matrix has N = NL + NR + 1 rows and
*>         M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[out] K
*> \verbatim
*>          K is INTEGER
*>         Contains the dimension of the non-deflated matrix,
*>         This is the order of the related secular equation. 1 <= K <=N.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>         On entry D contains the singular values of the two submatrices
*>         to be combined.  On exit D contains the trailing (N-K) updated
*>         singular values (those which were deflated) sorted into
*>         increasing order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is REAL array, dimension (N)
*>         On exit Z contains the updating row vector in the secular
*>         equation.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>         Contains the diagonal element associated with the added row.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is REAL
*>         Contains the off-diagonal element associated with the added
*>         row.
*> \endverbatim
*>
*> \param[in,out] U
*> \verbatim
*>          U is REAL array, dimension (LDU,N)
*>         On entry U contains the left singular vectors of two
*>         submatrices in the two square blocks with corners at (1,1),
*>         (NL, NL), and (NL+2, NL+2), (N,N).
*>         On exit U contains the trailing (N-K) updated left singular
*>         vectors (those which were deflated) in its last N-K columns.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>         The leading dimension of the array U.  LDU >= N.
*> \endverbatim
*>
*> \param[in,out] VT
*> \verbatim
*>          VT is REAL array, dimension (LDVT,M)
*>         On entry VT**T contains the right singular vectors of two
*>         submatrices in the two square blocks with corners at (1,1),
*>         (NL+1, NL+1), and (NL+2, NL+2), (M,M).
*>         On exit VT**T contains the trailing (N-K) updated right singular
*>         vectors (those which were deflated) in its last N-K columns.
*>         In case SQRE =1, the last row of VT spans the right null
*>         space.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>         The leading dimension of the array VT.  LDVT >= M.
*> \endverbatim
*>
*> \param[out] DSIGMA
*> \verbatim
*>          DSIGMA is REAL array, dimension (N)
*>         Contains a copy of the diagonal elements (K-1 singular values
*>         and one zero) in the secular equation.
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*>          U2 is REAL array, dimension (LDU2,N)
*>         Contains a copy of the first K-1 left singular vectors which
*>         will be used by SLASD3 in a matrix multiply (SGEMM) to solve
*>         for the new left singular vectors. U2 is arranged into four
*>         blocks. The first block contains a column with 1 at NL+1 and
*>         zero everywhere else; the second block contains non-zero
*>         entries only at and above NL; the third contains non-zero
*>         entries only below NL+1; and the fourth is dense.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*>          LDU2 is INTEGER
*>         The leading dimension of the array U2.  LDU2 >= N.
*> \endverbatim
*>
*> \param[out] VT2
*> \verbatim
*>          VT2 is REAL array, dimension (LDVT2,N)
*>         VT2**T contains a copy of the first K right singular vectors
*>         which will be used by SLASD3 in a matrix multiply (SGEMM) to
*>         solve for the new right singular vectors. VT2 is arranged into
*>         three blocks. The first block contains a row that corresponds
*>         to the special 0 diagonal element in SIGMA; the second block
*>         contains non-zeros only at and before NL +1; the third block
*>         contains non-zeros only at and after  NL +2.
*> \endverbatim
*>
*> \param[in] LDVT2
*> \verbatim
*>          LDVT2 is INTEGER
*>         The leading dimension of the array VT2.  LDVT2 >= M.
*> \endverbatim
*>
*> \param[out] IDXP
*> \verbatim
*>          IDXP is INTEGER array, dimension (N)
*>         This will contain the permutation used to place deflated
*>         values of D at the end of the array. On output IDXP(2:K)
*>         points to the nondeflated D-values and IDXP(K+1:N)
*>         points to the deflated singular values.
*> \endverbatim
*>
*> \param[out] IDX
*> \verbatim
*>          IDX is INTEGER array, dimension (N)
*>         This will contain the permutation used to sort the contents of
*>         D into ascending order.
*> \endverbatim
*>
*> \param[out] IDXC
*> \verbatim
*>          IDXC is INTEGER array, dimension (N)
*>         This will contain the permutation used to arrange the columns
*>         of the deflated U matrix into three groups:  the first group
*>         contains non-zero entries only at and above NL, the second
*>         contains non-zero entries only below NL+2, and the third is
*>         dense.
*> \endverbatim
*>
*> \param[in,out] IDXQ
*> \verbatim
*>          IDXQ is INTEGER array, dimension (N)
*>         This contains the permutation which separately sorts the two
*>         sub-problems in D into ascending order.  Note that entries in
*>         the first hlaf of this permutation must first be moved one
*>         position backward; and entries in the second half
*>         must first have NL+1 added to their values.
*> \endverbatim
*>
*> \param[out] COLTYP
*> \verbatim
*>          COLTYP is INTEGER array, dimension (N)
*>         As workspace, this will contain a label which will indicate
*>         which of the following types a column in the U2 matrix or a
*>         row in the VT2 matrix is:
*>         1 : non-zero in the upper half only
*>         2 : non-zero in the lower half only
*>         3 : dense
*>         4 : deflated
*> \endverbatim
*> \verbatim
*>         On exit, it is an array of dimension 4, with COLTYP(I) being
*>         the dimension of the I-th type columns.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  Based on contributions by
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
     $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
     $                   IDXC, IDXQ, COLTYP, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
     $                   IDXQ( * )
      REAL               D( * ), DSIGMA( * ), U( LDU, * ),
     $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
     $                   Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, EIGHT
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
     $                   EIGHT = 8.0E+0 )
*     ..
*     .. Local Arrays ..
      INTEGER            CTOT( 4 ), PSM( 4 )
*     ..
*     .. Local Scalars ..
      INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
     $                   N, NLP1, NLP2
      REAL               C, EPS, HLFTOL, S, TAU, TOL, Z1
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLACPY, SLAMRG, SLASET, SROT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( NL.LT.1 ) THEN
         INFO = -1
      ELSE IF( NR.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
         INFO = -3
      END IF
*
      N = NL + NR + 1
      M = N + SQRE
*
      IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -12
      ELSE IF( LDU2.LT.N ) THEN
         INFO = -15
      ELSE IF( LDVT2.LT.M ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASD2', -INFO )
         RETURN
      END IF
*
      NLP1 = NL + 1
      NLP2 = NL + 2
*
*     Generate the first part of the vector Z; and move the singular
*     values in the first part of D one position backward.
*
      Z1 = ALPHA*VT( NLP1, NLP1 )
      Z( 1 ) = Z1
      DO 10 I = NL, 1, -1
         Z( I+1 ) = ALPHA*VT( I, NLP1 )
         D( I+1 ) = D( I )
         IDXQ( I+1 ) = IDXQ( I ) + 1
   10 CONTINUE
*
*     Generate the second part of the vector Z.
*
      DO 20 I = NLP2, M
         Z( I ) = BETA*VT( I, NLP2 )
   20 CONTINUE
*
*     Initialize some reference arrays.
*
      DO 30 I = 2, NLP1
         COLTYP( I ) = 1
   30 CONTINUE
      DO 40 I = NLP2, N
         COLTYP( I ) = 2
   40 CONTINUE
*
*     Sort the singular values into increasing order
*
      DO 50 I = NLP2, N
         IDXQ( I ) = IDXQ( I ) + NLP1
   50 CONTINUE
*
*     DSIGMA, IDXC, IDXC, and the first column of U2
*     are used as storage space.
*
      DO 60 I = 2, N
         DSIGMA( I ) = D( IDXQ( I ) )
         U2( I, 1 ) = Z( IDXQ( I ) )
         IDXC( I ) = COLTYP( IDXQ( I ) )
   60 CONTINUE
*
      CALL SLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
*
      DO 70 I = 2, N
         IDXI = 1 + IDX( I )
         D( I ) = DSIGMA( IDXI )
         Z( I ) = U2( IDXI, 1 )
         COLTYP( I ) = IDXC( IDXI )
   70 CONTINUE
*
*     Calculate the allowable deflation tolerance
*
      EPS = SLAMCH( 'Epsilon' )
      TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
      TOL = EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
*
*     There are 2 kinds of deflation -- first a value in the z-vector
*     is small, second two (or more) singular values are very close
*     together (their difference is small).
*
*     If the value in the z-vector is small, we simply permute the
*     array so that the corresponding singular value is moved to the
*     end.
*
*     If two values in the D-vector are close, we perform a two-sided
*     rotation designed to make one of the corresponding z-vector
*     entries zero, and then permute the array so that the deflated
*     singular value is moved to the end.
*
*     If there are multiple singular values then the problem deflates.
*     Here the number of equal singular values are found.  As each equal
*     singular value is found, an elementary reflector is computed to
*     rotate the corresponding singular subspace so that the
*     corresponding components of Z are zero in this new basis.
*
      K = 1
      K2 = N + 1
      DO 80 J = 2, N
         IF( ABS( Z( J ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            IDXP( K2 ) = J
            COLTYP( J ) = 4
            IF( J.EQ.N )
     $         GO TO 120
         ELSE
            JPREV = J
            GO TO 90
         END IF
   80 CONTINUE
   90 CONTINUE
      J = JPREV
  100 CONTINUE
      J = J + 1
      IF( J.GT.N )
     $   GO TO 110
      IF( ABS( Z( J ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         IDXP( K2 ) = J
         COLTYP( J ) = 4
      ELSE
*
*        Check if singular values are close enough to allow deflation.
*
         IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            S = Z( JPREV )
            C = Z( J )
*
*           Find sqrt(a**2+b**2) without overflow or
*           destructive underflow.
*
            TAU = SLAPY2( C, S )
            C = C / TAU
            S = -S / TAU
            Z( J ) = TAU
            Z( JPREV ) = ZERO
*
*           Apply back the Givens rotation to the left and right
*           singular vector matrices.
*
            IDXJP = IDXQ( IDX( JPREV )+1 )
            IDXJ = IDXQ( IDX( J )+1 )
            IF( IDXJP.LE.NLP1 ) THEN
               IDXJP = IDXJP - 1
            END IF
            IF( IDXJ.LE.NLP1 ) THEN
               IDXJ = IDXJ - 1
            END IF
            CALL SROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
            CALL SROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
     $                 S )
            IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
               COLTYP( J ) = 3
            END IF
            COLTYP( JPREV ) = 4
            K2 = K2 - 1
            IDXP( K2 ) = JPREV
            JPREV = J
         ELSE
            K = K + 1
            U2( K, 1 ) = Z( JPREV )
            DSIGMA( K ) = D( JPREV )
            IDXP( K ) = JPREV
            JPREV = J
         END IF
      END IF
      GO TO 100
  110 CONTINUE
*
*     Record the last singular value.
*
      K = K + 1
      U2( K, 1 ) = Z( JPREV )
      DSIGMA( K ) = D( JPREV )
      IDXP( K ) = JPREV
*
  120 CONTINUE
*
*     Count up the total number of the various types of columns, then
*     form a permutation which positions the four column types into
*     four groups of uniform structure (although one or more of these
*     groups may be empty).
*
      DO 130 J = 1, 4
         CTOT( J ) = 0
  130 CONTINUE
      DO 140 J = 2, N
         CT = COLTYP( J )
         CTOT( CT ) = CTOT( CT ) + 1
  140 CONTINUE
*
*     PSM(*) = Position in SubMatrix (of types 1 through 4)
*
      PSM( 1 ) = 2
      PSM( 2 ) = 2 + CTOT( 1 )
      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
*
*     Fill out the IDXC array so that the permutation which it induces
*     will place all type-1 columns first, all type-2 columns next,
*     then all type-3's, and finally all type-4's, starting from the
*     second column. This applies similarly to the rows of VT.
*
      DO 150 J = 2, N
         JP = IDXP( J )
         CT = COLTYP( JP )
         IDXC( PSM( CT ) ) = J
         PSM( CT ) = PSM( CT ) + 1
  150 CONTINUE
*
*     Sort the singular values and corresponding singular vectors into
*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors
*     which were not deflated go into the first K slots of DSIGMA, U2,
*     and VT2 respectively, while those which were deflated go into the
*     last N - K slots, except that the first column/row will be treated
*     separately.
*
      DO 160 J = 2, N
         JP = IDXP( J )
         DSIGMA( J ) = D( JP )
         IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
         IF( IDXJ.LE.NLP1 ) THEN
            IDXJ = IDXJ - 1
         END IF
         CALL SCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
         CALL SCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
  160 CONTINUE
*
*     Determine DSIGMA(1), DSIGMA(2) and Z(1)
*
      DSIGMA( 1 ) = ZERO
      HLFTOL = TOL / TWO
      IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
     $   DSIGMA( 2 ) = HLFTOL
      IF( M.GT.N ) THEN
         Z( 1 ) = SLAPY2( Z1, Z( M ) )
         IF( Z( 1 ).LE.TOL ) THEN
            C = ONE
            S = ZERO
            Z( 1 ) = TOL
         ELSE
            C = Z1 / Z( 1 )
            S = Z( M ) / Z( 1 )
         END IF
      ELSE
         IF( ABS( Z1 ).LE.TOL ) THEN
            Z( 1 ) = TOL
         ELSE
            Z( 1 ) = Z1
         END IF
      END IF
*
*     Move the rest of the updating row to Z.
*
      CALL SCOPY( K-1, U2( 2, 1 ), 1, Z( 2 ), 1 )
*
*     Determine the first column of U2, the first row of VT2 and the
*     last row of VT.
*
      CALL SLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
      U2( NLP1, 1 ) = ONE
      IF( M.GT.N ) THEN
         DO 170 I = 1, NLP1
            VT( M, I ) = -S*VT( NLP1, I )
            VT2( 1, I ) = C*VT( NLP1, I )
  170    CONTINUE
         DO 180 I = NLP2, M
            VT2( 1, I ) = S*VT( M, I )
            VT( M, I ) = C*VT( M, I )
  180    CONTINUE
      ELSE
         CALL SCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 1, 1 ), LDVT2 )
      END IF
      IF( M.GT.N ) THEN
         CALL SCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
      END IF
*
*     The deflated singular values and their corresponding vectors go
*     into the back of D, U, and V respectively.
*
      IF( N.GT.K ) THEN
         CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
         CALL SLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
     $                LDU )
         CALL SLACPY( 'A', N-K, M, VT2( K+1, 1 ), LDVT2, VT( K+1, 1 ),
     $                LDVT )
      END IF
*
*     Copy CTOT into COLTYP for referencing in SLASD3.
*
      DO 190 J = 1, 4
         COLTYP( J ) = CTOT( J )
  190 CONTINUE
*
      RETURN
*
*     End of SLASD2
*
      END