1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
*> \brief \b SLAS2 computes singular values of a 2-by-2 triangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slas2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slas2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slas2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )
*
* .. Scalar Arguments ..
* REAL F, G, H, SSMAX, SSMIN
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAS2 computes the singular values of the 2-by-2 matrix
*> [ F G ]
*> [ 0 H ].
*> On return, SSMIN is the smaller singular value and SSMAX is the
*> larger singular value.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] F
*> \verbatim
*> F is REAL
*> The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] G
*> \verbatim
*> G is REAL
*> The (1,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is REAL
*> The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] SSMIN
*> \verbatim
*> SSMIN is REAL
*> The smaller singular value.
*> \endverbatim
*>
*> \param[out] SSMAX
*> \verbatim
*> SSMAX is REAL
*> The larger singular value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Barring over/underflow, all output quantities are correct to within
*> a few units in the last place (ulps), even in the absence of a guard
*> digit in addition/subtraction.
*>
*> In IEEE arithmetic, the code works correctly if one matrix element is
*> infinite.
*>
*> Overflow will not occur unless the largest singular value itself
*> overflows, or is within a few ulps of overflow. (On machines with
*> partial overflow, like the Cray, overflow may occur if the largest
*> singular value is within a factor of 2 of overflow.)
*>
*> Underflow is harmless if underflow is gradual. Otherwise, results
*> may correspond to a matrix modified by perturbations of size near
*> the underflow threshold.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLAS2( F, G, H, SSMIN, SSMAX )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
REAL F, G, H, SSMAX, SSMIN
* ..
*
* ====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL TWO
PARAMETER ( TWO = 2.0E0 )
* ..
* .. Local Scalars ..
REAL AS, AT, AU, C, FA, FHMN, FHMX, GA, HA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
FA = ABS( F )
GA = ABS( G )
HA = ABS( H )
FHMN = MIN( FA, HA )
FHMX = MAX( FA, HA )
IF( FHMN.EQ.ZERO ) THEN
SSMIN = ZERO
IF( FHMX.EQ.ZERO ) THEN
SSMAX = GA
ELSE
SSMAX = MAX( FHMX, GA )*SQRT( ONE+
$ ( MIN( FHMX, GA ) / MAX( FHMX, GA ) )**2 )
END IF
ELSE
IF( GA.LT.FHMX ) THEN
AS = ONE + FHMN / FHMX
AT = ( FHMX-FHMN ) / FHMX
AU = ( GA / FHMX )**2
C = TWO / ( SQRT( AS*AS+AU )+SQRT( AT*AT+AU ) )
SSMIN = FHMN*C
SSMAX = FHMX / C
ELSE
AU = FHMX / GA
IF( AU.EQ.ZERO ) THEN
*
* Avoid possible harmful underflow if exponent range
* asymmetric (true SSMIN may not underflow even if
* AU underflows)
*
SSMIN = ( FHMN*FHMX ) / GA
SSMAX = GA
ELSE
AS = ONE + FHMN / FHMX
AT = ( FHMX-FHMN ) / FHMX
C = ONE / ( SQRT( ONE+( AS*AU )**2 )+
$ SQRT( ONE+( AT*AU )**2 ) )
SSMIN = ( FHMN*C )*AU
SSMIN = SSMIN + SSMIN
SSMAX = GA / ( C+C )
END IF
END IF
END IF
RETURN
*
* End of SLAS2
*
END
|