summaryrefslogtreecommitdiff
path: root/SRC/slarzt.f
blob: b7e44841e59c4dfde783b092327fe4dab7c36b4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
*> \brief \b SLARZT forms the triangular factor T of a block reflector H = I - vtvH.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SLARZT + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarzt.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarzt.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarzt.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIRECT, STOREV
*       INTEGER            K, LDT, LDV, N
*       ..
*       .. Array Arguments ..
*       REAL               T( LDT, * ), TAU( * ), V( LDV, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLARZT forms the triangular factor T of a real block reflector
*> H of order > n, which is defined as a product of k elementary
*> reflectors.
*>
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*>
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*>
*> If STOREV = 'C', the vector which defines the elementary reflector
*> H(i) is stored in the i-th column of the array V, and
*>
*>    H  =  I - V * T * V**T
*>
*> If STOREV = 'R', the vector which defines the elementary reflector
*> H(i) is stored in the i-th row of the array V, and
*>
*>    H  =  I - V**T * T * V
*>
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] DIRECT
*> \verbatim
*>          DIRECT is CHARACTER*1
*>          Specifies the order in which the elementary reflectors are
*>          multiplied to form the block reflector:
*>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*> \endverbatim
*>
*> \param[in] STOREV
*> \verbatim
*>          STOREV is CHARACTER*1
*>          Specifies how the vectors which define the elementary
*>          reflectors are stored (see also Further Details):
*>          = 'C': columnwise                        (not supported yet)
*>          = 'R': rowwise
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the block reflector H. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The order of the triangular factor T (= the number of
*>          elementary reflectors). K >= 1.
*> \endverbatim
*>
*> \param[in,out] V
*> \verbatim
*>          V is REAL array, dimension
*>                               (LDV,K) if STOREV = 'C'
*>                               (LDV,N) if STOREV = 'R'
*>          The matrix V. See further details.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V.
*>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension (K)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is REAL array, dimension (LDT,K)
*>          The k by k triangular factor T of the block reflector.
*>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*>          lower triangular. The rest of the array is not used.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T. LDT >= K.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date August 2012
*
*> \ingroup realOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The shape of the matrix V and the storage of the vectors which define
*>  the H(i) is best illustrated by the following example with n = 5 and
*>  k = 3. The elements equal to 1 are not stored; the corresponding
*>  array elements are modified but restored on exit. The rest of the
*>  array is not used.
*>
*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*>
*>                                              ______V_____
*>         ( v1 v2 v3 )                        /            \
*>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
*>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
*>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
*>         ( v1 v2 v3 )
*>            .  .  .
*>            .  .  .
*>            1  .  .
*>               1  .
*>                  1
*>
*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*>
*>                                                        ______V_____
*>            1                                          /            \
*>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
*>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
*>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
*>            .  .  .
*>         ( v1 v2 v3 )
*>         ( v1 v2 v3 )
*>     V = ( v1 v2 v3 )
*>         ( v1 v2 v3 )
*>         ( v1 v2 v3 )
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     August 2012
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
      REAL               T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, STRMV, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Check for currently supported options
*
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLARZT', -INFO )
         RETURN
      END IF
*
      DO 20 I = K, 1, -1
         IF( TAU( I ).EQ.ZERO ) THEN
*
*           H(i)  =  I
*
            DO 10 J = I, K
               T( J, I ) = ZERO
   10       CONTINUE
         ELSE
*
*           general case
*
            IF( I.LT.K ) THEN
*
*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**T
*
               CALL SGEMV( 'No transpose', K-I, N, -TAU( I ),
     $                     V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
     $                     T( I+1, I ), 1 )
*
*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
*
               CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
     $                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
            END IF
            T( I, I ) = TAU( I )
         END IF
   20 CONTINUE
      RETURN
*
*     End of SLARZT
*
      END