summaryrefslogtreecommitdiff
path: root/SRC/slarrk.f
blob: 3fdb7769aad85b2e33c466f20771fec5a79b5ce0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
*> \brief \b SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARRK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrk.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLARRK( N, IW, GL, GU,
*                           D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
*       .. Scalar Arguments ..
*       INTEGER   INFO, IW, N
*       REAL                PIVMIN, RELTOL, GL, GU, W, WERR
*       ..
*       .. Array Arguments ..
*       REAL               D( * ), E2( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLARRK computes one eigenvalue of a symmetric tridiagonal
*> matrix T to suitable accuracy. This is an auxiliary code to be
*> called from SSTEMR.
*>
*> To avoid overflow, the matrix must be scaled so that its
*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
*> accuracy, it should not be much smaller than that.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford
*> University, July 21, 1966.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the tridiagonal matrix T.  N >= 0.
*> \endverbatim
*>
*> \param[in] IW
*> \verbatim
*>          IW is INTEGER
*>          The index of the eigenvalues to be returned.
*> \endverbatim
*>
*> \param[in] GL
*> \verbatim
*>          GL is REAL
*> \endverbatim
*>
*> \param[in] GU
*> \verbatim
*>          GU is REAL
*>          An upper and a lower bound on the eigenvalue.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The n diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*>          E2 is REAL array, dimension (N-1)
*>          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*>          PIVMIN is REAL
*>          The minimum pivot allowed in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*>          RELTOL is REAL
*>          The minimum relative width of an interval.  When an interval
*>          is narrower than RELTOL times the larger (in
*>          magnitude) endpoint, then it is considered to be
*>          sufficiently small, i.e., converged.  Note: this should
*>          always be at least radix*machine epsilon.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL
*> \endverbatim
*>
*> \param[out] WERR
*> \verbatim
*>          WERR is REAL
*>          The error bound on the corresponding eigenvalue approximation
*>          in W.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:       Eigenvalue converged
*>          = -1:      Eigenvalue did NOT converge
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  FUDGE   REAL            , default = 2
*>          A "fudge factor" to widen the Gershgorin intervals.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*  =====================================================================
      SUBROUTINE SLARRK( N, IW, GL, GU,
     $                    D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER   INFO, IW, N
      REAL                PIVMIN, RELTOL, GL, GU, W, WERR
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E2( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               FUDGE, HALF, TWO, ZERO
      PARAMETER          ( HALF = 0.5E0, TWO = 2.0E0,
     $                     FUDGE = TWO, ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER   I, IT, ITMAX, NEGCNT
      REAL               ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
     $                   TMP2, TNORM
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL   SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         INFO = 0
         RETURN
      END IF
*
*     Get machine constants
      EPS = SLAMCH( 'P' )

      TNORM = MAX( ABS( GL ), ABS( GU ) )
      RTOLI = RELTOL
      ATOLI = FUDGE*TWO*PIVMIN

      ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
     $           LOG( TWO ) ) + 2

      INFO = -1

      LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
      RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
      IT = 0

 10   CONTINUE
*
*     Check if interval converged or maximum number of iterations reached
*
      TMP1 = ABS( RIGHT - LEFT )
      TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
      IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
         INFO = 0
         GOTO 30
      ENDIF
      IF(IT.GT.ITMAX)
     $   GOTO 30

*
*     Count number of negative pivots for mid-point
*
      IT = IT + 1
      MID = HALF * (LEFT + RIGHT)
      NEGCNT = 0
      TMP1 = D( 1 ) - MID
      IF( ABS( TMP1 ).LT.PIVMIN )
     $   TMP1 = -PIVMIN
      IF( TMP1.LE.ZERO )
     $   NEGCNT = NEGCNT + 1
*
      DO 20 I = 2, N
         TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
         IF( ABS( TMP1 ).LT.PIVMIN )
     $      TMP1 = -PIVMIN
         IF( TMP1.LE.ZERO )
     $      NEGCNT = NEGCNT + 1
 20   CONTINUE

      IF(NEGCNT.GE.IW) THEN
         RIGHT = MID
      ELSE
         LEFT = MID
      ENDIF
      GOTO 10

 30   CONTINUE
*
*     Converged or maximum number of iterations reached
*
      W = HALF * (LEFT + RIGHT)
      WERR = HALF * ABS( RIGHT - LEFT )

      RETURN
*
*     End of SLARRK
*
      END