1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
*> \brief \b SLARFY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INCV, LDC, N
* REAL TAU
* ..
* .. Array Arguments ..
* REAL C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARFY applies an elementary reflector, or Householder matrix, H,
*> to an n x n symmetric matrix C, from both the left and the right.
*>
*> H is represented in the form
*>
*> H = I - tau * v * v'
*>
*> where tau is a scalar and v is a vector.
*>
*> If tau is zero, then H is taken to be the unit matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix C is stored.
*> = 'U': Upper triangle
*> = 'L': Lower triangle
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is REAL array, dimension
*> (1 + (N-1)*abs(INCV))
*> The vector v as described above.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between successive elements of v. INCV must
*> not be zero.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL
*> The value tau as described above.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC, N)
*> On entry, the matrix C.
*> On exit, C is overwritten by H * C * H'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (N)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK test routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCV, LDC, N
REAL TAU
* ..
* .. Array Arguments ..
REAL C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO, HALF
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0, HALF = 0.5E+0 )
* ..
* .. Local Scalars ..
REAL ALPHA
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSYMV, SSYR2
* ..
* .. External Functions ..
REAL SDOT
EXTERNAL SDOT
* ..
* .. Executable Statements ..
*
IF( TAU.EQ.ZERO )
$ RETURN
*
* Form w:= C * v
*
CALL SSYMV( UPLO, N, ONE, C, LDC, V, INCV, ZERO, WORK, 1 )
*
ALPHA = -HALF*TAU*SDOT( N, WORK, 1, V, INCV )
CALL SAXPY( N, ALPHA, V, INCV, WORK, 1 )
*
* C := C - v * w' - w * v'
*
CALL SSYR2( UPLO, N, -TAU, V, INCV, WORK, 1, C, LDC )
*
RETURN
*
* End of SLARFY
*
END
|