summaryrefslogtreecommitdiff
path: root/SRC/slarfgp.f
blob: 59038dfcea62a6769dbc58af3b5c74eabbbcac2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
*> \brief \b SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARFGP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfgp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfgp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfgp.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLARFGP( N, ALPHA, X, INCX, TAU )
*
*       .. Scalar Arguments ..
*       INTEGER            INCX, N
*       REAL               ALPHA, TAU
*       ..
*       .. Array Arguments ..
*       REAL               X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLARFGP generates a real elementary reflector H of order n, such
*> that
*>
*>       H * ( alpha ) = ( beta ),   H**T * H = I.
*>           (   x   )   (   0  )
*>
*> where alpha and beta are scalars, beta is non-negative, and x is
*> an (n-1)-element real vector.  H is represented in the form
*>
*>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
*>                     ( v )
*>
*> where tau is a real scalar and v is a real (n-1)-element
*> vector.
*>
*> If the elements of x are all zero, then tau = 0 and H is taken to be
*> the unit matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>          On entry, the value alpha.
*>          On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is REAL array, dimension
*>                         (1+(N-2)*abs(INCX))
*>          On entry, the vector x.
*>          On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is REAL
*>          The value tau.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE SLARFGP( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               ALPHA, TAU
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2, SNRM2
      EXTERNAL           SLAMCH, SLAPY2, SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SNRM2( N-1, X, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  [+/-1, 0; I], sign chosen so ALPHA >= 0.
*
         IF( ALPHA.GE.ZERO ) THEN
*           When TAU.eq.ZERO, the vector is special-cased to be
*           all zeros in the application routines.  We do not need
*           to clear it.
            TAU = ZERO
         ELSE
*           However, the application routines rely on explicit
*           zero checks when TAU.ne.ZERO, and we must clear X.
            TAU = TWO
            DO J = 1, N-1
               X( 1 + (J-1)*INCX ) = 0
            END DO
            ALPHA = -ALPHA
         END IF
      ELSE
*
*        general case
*
         BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
         SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' )
         KNT = 0
         IF( ABS( BETA ).LT.SMLNUM ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            BIGNUM = ONE / SMLNUM
   10       CONTINUE
            KNT = KNT + 1
            CALL SSCAL( N-1, BIGNUM, X, INCX )
            BETA = BETA*BIGNUM
            ALPHA = ALPHA*BIGNUM
            IF( ABS( BETA ).LT.SMLNUM )
     $         GO TO 10
*
*           New BETA is at most 1, at least SMLNUM
*
            XNORM = SNRM2( N-1, X, INCX )
            BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
         END IF
         SAVEALPHA = ALPHA
         ALPHA = ALPHA + BETA
         IF( BETA.LT.ZERO ) THEN
            BETA = -BETA
            TAU = -ALPHA / BETA
         ELSE
            ALPHA = XNORM * (XNORM/ALPHA)
            TAU = ALPHA / BETA
            ALPHA = -ALPHA
         END IF
*
         IF ( ABS(TAU).LE.SMLNUM ) THEN
*
*           In the case where the computed TAU ends up being a denormalized number,
*           it loses relative accuracy. This is a BIG problem. Solution: flush TAU
*           to ZERO. This explains the next IF statement.
*
*           (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
*           (Thanks Pat. Thanks MathWorks.)
*
            IF( SAVEALPHA.GE.ZERO ) THEN
               TAU = ZERO
            ELSE
               TAU = TWO
               DO J = 1, N-1
                  X( 1 + (J-1)*INCX ) = 0
               END DO
               BETA = -SAVEALPHA
            END IF
*
         ELSE
*
*           This is the general case.
*
            CALL SSCAL( N-1, ONE / ALPHA, X, INCX )
*
         END IF
*
*        If BETA is subnormal, it may lose relative accuracy
*
         DO 20 J = 1, KNT
            BETA = BETA*SMLNUM
 20      CONTINUE
         ALPHA = BETA
      END IF
*
      RETURN
*
*     End of SLARFGP
*
      END