summaryrefslogtreecommitdiff
path: root/SRC/slarfg.f
blob: 638b9ab8f04a7513159618e2ec0c3e23e415197d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
*> \brief \b SLARFG generates an elementary reflector (Householder matrix).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARFG + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfg.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfg.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfg.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
*
*       .. Scalar Arguments ..
*       INTEGER            INCX, N
*       REAL               ALPHA, TAU
*       ..
*       .. Array Arguments ..
*       REAL               X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLARFG generates a real elementary reflector H of order n, such
*> that
*>
*>       H * ( alpha ) = ( beta ),   H**T * H = I.
*>           (   x   )   (   0  )
*>
*> where alpha and beta are scalars, and x is an (n-1)-element real
*> vector. H is represented in the form
*>
*>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
*>                     ( v )
*>
*> where tau is a real scalar and v is a real (n-1)-element
*> vector.
*>
*> If the elements of x are all zero, then tau = 0 and H is taken to be
*> the unit matrix.
*>
*> Otherwise  1 <= tau <= 2.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>          On entry, the value alpha.
*>          On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is REAL array, dimension
*>                         (1+(N-2)*abs(INCX))
*>          On entry, the vector x.
*>          On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is REAL
*>          The value tau.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               ALPHA, TAU
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2, SNRM2
      EXTERNAL           SLAMCH, SLAPY2, SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.1 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SNRM2( N-1, X, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  I
*
         TAU = ZERO
      ELSE
*
*        general case
*
         BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
         KNT = 0
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            RSAFMN = ONE / SAFMIN
   10       CONTINUE
            KNT = KNT + 1
            CALL SSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = SNRM2( N-1, X, INCX )
            BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
         END IF
         TAU = ( BETA-ALPHA ) / BETA
         CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
*
*        If ALPHA is subnormal, it may lose relative accuracy
*
         DO 20 J = 1, KNT
            BETA = BETA*SAFMIN
 20      CONTINUE
         ALPHA = BETA
      END IF
*
      RETURN
*
*     End of SLARFG
*
      END