1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
*> \brief \b SLAGTF computes an LU factorization of a matrix T-λI, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAGTF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagtf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagtf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagtf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, N
* REAL LAMBDA, TOL
* ..
* .. Array Arguments ..
* INTEGER IN( * )
* REAL A( * ), B( * ), C( * ), D( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
*> tridiagonal matrix and lambda is a scalar, as
*>
*> T - lambda*I = PLU,
*>
*> where P is a permutation matrix, L is a unit lower tridiagonal matrix
*> with at most one non-zero sub-diagonal elements per column and U is
*> an upper triangular matrix with at most two non-zero super-diagonal
*> elements per column.
*>
*> The factorization is obtained by Gaussian elimination with partial
*> pivoting and implicit row scaling.
*>
*> The parameter LAMBDA is included in the routine so that SLAGTF may
*> be used, in conjunction with SLAGTS, to obtain eigenvectors of T by
*> inverse iteration.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (N)
*> On entry, A must contain the diagonal elements of T.
*>
*> On exit, A is overwritten by the n diagonal elements of the
*> upper triangular matrix U of the factorization of T.
*> \endverbatim
*>
*> \param[in] LAMBDA
*> \verbatim
*> LAMBDA is REAL
*> On entry, the scalar lambda.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (N-1)
*> On entry, B must contain the (n-1) super-diagonal elements of
*> T.
*>
*> On exit, B is overwritten by the (n-1) super-diagonal
*> elements of the matrix U of the factorization of T.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (N-1)
*> On entry, C must contain the (n-1) sub-diagonal elements of
*> T.
*>
*> On exit, C is overwritten by the (n-1) sub-diagonal elements
*> of the matrix L of the factorization of T.
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*> TOL is REAL
*> On entry, a relative tolerance used to indicate whether or
*> not the matrix (T - lambda*I) is nearly singular. TOL should
*> normally be chose as approximately the largest relative error
*> in the elements of T. For example, if the elements of T are
*> correct to about 4 significant figures, then TOL should be
*> set to about 5*10**(-4). If TOL is supplied as less than eps,
*> where eps is the relative machine precision, then the value
*> eps is used in place of TOL.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is REAL array, dimension (N-2)
*> On exit, D is overwritten by the (n-2) second super-diagonal
*> elements of the matrix U of the factorization of T.
*> \endverbatim
*>
*> \param[out] IN
*> \verbatim
*> IN is INTEGER array, dimension (N)
*> On exit, IN contains details of the permutation matrix P. If
*> an interchange occurred at the kth step of the elimination,
*> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
*> returns the smallest positive integer j such that
*>
*> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
*>
*> where norm( A(j) ) denotes the sum of the absolute values of
*> the jth row of the matrix A. If no such j exists then IN(n)
*> is returned as zero. If IN(n) is returned as positive, then a
*> diagonal element of U is small, indicating that
*> (T - lambda*I) is singular or nearly singular,
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0 : successful exit
*> .lt. 0: if INFO = -k, the kth argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup auxOTHERcomputational
*
* =====================================================================
SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, N
REAL LAMBDA, TOL
* ..
* .. Array Arguments ..
INTEGER IN( * )
REAL A( * ), B( * ), C( * ), D( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER K
REAL EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'SLAGTF', -INFO )
RETURN
END IF
*
IF( N.EQ.0 )
$ RETURN
*
A( 1 ) = A( 1 ) - LAMBDA
IN( N ) = 0
IF( N.EQ.1 ) THEN
IF( A( 1 ).EQ.ZERO )
$ IN( 1 ) = 1
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
TL = MAX( TOL, EPS )
SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
DO 10 K = 1, N - 1
A( K+1 ) = A( K+1 ) - LAMBDA
SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
IF( K.LT.( N-1 ) )
$ SCALE2 = SCALE2 + ABS( B( K+1 ) )
IF( A( K ).EQ.ZERO ) THEN
PIV1 = ZERO
ELSE
PIV1 = ABS( A( K ) ) / SCALE1
END IF
IF( C( K ).EQ.ZERO ) THEN
IN( K ) = 0
PIV2 = ZERO
SCALE1 = SCALE2
IF( K.LT.( N-1 ) )
$ D( K ) = ZERO
ELSE
PIV2 = ABS( C( K ) ) / SCALE2
IF( PIV2.LE.PIV1 ) THEN
IN( K ) = 0
SCALE1 = SCALE2
C( K ) = C( K ) / A( K )
A( K+1 ) = A( K+1 ) - C( K )*B( K )
IF( K.LT.( N-1 ) )
$ D( K ) = ZERO
ELSE
IN( K ) = 1
MULT = A( K ) / C( K )
A( K ) = C( K )
TEMP = A( K+1 )
A( K+1 ) = B( K ) - MULT*TEMP
IF( K.LT.( N-1 ) ) THEN
D( K ) = B( K+1 )
B( K+1 ) = -MULT*D( K )
END IF
B( K ) = TEMP
C( K ) = MULT
END IF
END IF
IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
$ IN( N ) = K
10 CONTINUE
IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
$ IN( N ) = N
*
RETURN
*
* End of SLAGTF
*
END
|