1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
*> \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAEIN + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaein.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaein.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaein.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
*
* .. Scalar Arguments ..
* LOGICAL NOINIT, RIGHTV
* INTEGER INFO, LDB, LDH, N
* REAL BIGNUM, EPS3, SMLNUM, WI, WR
* ..
* .. Array Arguments ..
* REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAEIN uses inverse iteration to find a right or left eigenvector
*> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
*> matrix H.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] RIGHTV
*> \verbatim
*> RIGHTV is LOGICAL
*> = .TRUE. : compute right eigenvector;
*> = .FALSE.: compute left eigenvector.
*> \endverbatim
*>
*> \param[in] NOINIT
*> \verbatim
*> NOINIT is LOGICAL
*> = .TRUE. : no initial vector supplied in (VR,VI).
*> = .FALSE.: initial vector supplied in (VR,VI).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is REAL array, dimension (LDH,N)
*> The upper Hessenberg matrix H.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*> WR is REAL
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*> WI is REAL
*> The real and imaginary parts of the eigenvalue of H whose
*> corresponding right or left eigenvector is to be computed.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*> VR is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[in,out] VI
*> \verbatim
*> VI is REAL array, dimension (N)
*> On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
*> a real starting vector for inverse iteration using the real
*> eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
*> must contain the real and imaginary parts of a complex
*> starting vector for inverse iteration using the complex
*> eigenvalue (WR,WI); otherwise VR and VI need not be set.
*> On exit, if WI = 0.0 (real eigenvalue), VR contains the
*> computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
*> VR and VI contain the real and imaginary parts of the
*> computed complex eigenvector. The eigenvector is normalized
*> so that the component of largest magnitude has magnitude 1;
*> here the magnitude of a complex number (x,y) is taken to be
*> |x| + |y|.
*> VI is not referenced if WI = 0.0.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= N+1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[in] EPS3
*> \verbatim
*> EPS3 is REAL
*> A small machine-dependent value which is used to perturb
*> close eigenvalues, and to replace zero pivots.
*> \endverbatim
*>
*> \param[in] SMLNUM
*> \verbatim
*> SMLNUM is REAL
*> A machine-dependent value close to the underflow threshold.
*> \endverbatim
*>
*> \param[in] BIGNUM
*> \verbatim
*> BIGNUM is REAL
*> A machine-dependent value close to the overflow threshold.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> = 1: inverse iteration did not converge; VR is set to the
*> last iterate, and so is VI if WI.ne.0.0.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup realOTHERauxiliary
*
* =====================================================================
SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
$ LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
LOGICAL NOINIT, RIGHTV
INTEGER INFO, LDB, LDH, N
REAL BIGNUM, EPS3, SMLNUM, WI, WR
* ..
* .. Array Arguments ..
REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TENTH
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TENTH = 1.0E-1 )
* ..
* .. Local Scalars ..
CHARACTER NORMIN, TRANS
INTEGER I, I1, I2, I3, IERR, ITS, J
REAL ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
$ REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
$ W1, X, XI, XR, Y
* ..
* .. External Functions ..
INTEGER ISAMAX
REAL SASUM, SLAPY2, SNRM2
EXTERNAL ISAMAX, SASUM, SLAPY2, SNRM2
* ..
* .. External Subroutines ..
EXTERNAL SLADIV, SLATRS, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, REAL, SQRT
* ..
* .. Executable Statements ..
*
INFO = 0
*
* GROWTO is the threshold used in the acceptance test for an
* eigenvector.
*
ROOTN = SQRT( REAL( N ) )
GROWTO = TENTH / ROOTN
NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
*
* Form B = H - (WR,WI)*I (except that the subdiagonal elements and
* the imaginary parts of the diagonal elements are not stored).
*
DO 20 J = 1, N
DO 10 I = 1, J - 1
B( I, J ) = H( I, J )
10 CONTINUE
B( J, J ) = H( J, J ) - WR
20 CONTINUE
*
IF( WI.EQ.ZERO ) THEN
*
* Real eigenvalue.
*
IF( NOINIT ) THEN
*
* Set initial vector.
*
DO 30 I = 1, N
VR( I ) = EPS3
30 CONTINUE
ELSE
*
* Scale supplied initial vector.
*
VNORM = SNRM2( N, VR, 1 )
CALL SSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
$ 1 )
END IF
*
IF( RIGHTV ) THEN
*
* LU decomposition with partial pivoting of B, replacing zero
* pivots by EPS3.
*
DO 60 I = 1, N - 1
EI = H( I+1, I )
IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
*
* Interchange rows and eliminate.
*
X = B( I, I ) / EI
B( I, I ) = EI
DO 40 J = I + 1, N
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - X*TEMP
B( I, J ) = TEMP
40 CONTINUE
ELSE
*
* Eliminate without interchange.
*
IF( B( I, I ).EQ.ZERO )
$ B( I, I ) = EPS3
X = EI / B( I, I )
IF( X.NE.ZERO ) THEN
DO 50 J = I + 1, N
B( I+1, J ) = B( I+1, J ) - X*B( I, J )
50 CONTINUE
END IF
END IF
60 CONTINUE
IF( B( N, N ).EQ.ZERO )
$ B( N, N ) = EPS3
*
TRANS = 'N'
*
ELSE
*
* UL decomposition with partial pivoting of B, replacing zero
* pivots by EPS3.
*
DO 90 J = N, 2, -1
EJ = H( J, J-1 )
IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
*
* Interchange columns and eliminate.
*
X = B( J, J ) / EJ
B( J, J ) = EJ
DO 70 I = 1, J - 1
TEMP = B( I, J-1 )
B( I, J-1 ) = B( I, J ) - X*TEMP
B( I, J ) = TEMP
70 CONTINUE
ELSE
*
* Eliminate without interchange.
*
IF( B( J, J ).EQ.ZERO )
$ B( J, J ) = EPS3
X = EJ / B( J, J )
IF( X.NE.ZERO ) THEN
DO 80 I = 1, J - 1
B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
80 CONTINUE
END IF
END IF
90 CONTINUE
IF( B( 1, 1 ).EQ.ZERO )
$ B( 1, 1 ) = EPS3
*
TRANS = 'T'
*
END IF
*
NORMIN = 'N'
DO 110 ITS = 1, N
*
* Solve U*x = scale*v for a right eigenvector
* or U**T*x = scale*v for a left eigenvector,
* overwriting x on v.
*
CALL SLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
$ VR, SCALE, WORK, IERR )
NORMIN = 'Y'
*
* Test for sufficient growth in the norm of v.
*
VNORM = SASUM( N, VR, 1 )
IF( VNORM.GE.GROWTO*SCALE )
$ GO TO 120
*
* Choose new orthogonal starting vector and try again.
*
TEMP = EPS3 / ( ROOTN+ONE )
VR( 1 ) = EPS3
DO 100 I = 2, N
VR( I ) = TEMP
100 CONTINUE
VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
110 CONTINUE
*
* Failure to find eigenvector in N iterations.
*
INFO = 1
*
120 CONTINUE
*
* Normalize eigenvector.
*
I = ISAMAX( N, VR, 1 )
CALL SSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
ELSE
*
* Complex eigenvalue.
*
IF( NOINIT ) THEN
*
* Set initial vector.
*
DO 130 I = 1, N
VR( I ) = EPS3
VI( I ) = ZERO
130 CONTINUE
ELSE
*
* Scale supplied initial vector.
*
NORM = SLAPY2( SNRM2( N, VR, 1 ), SNRM2( N, VI, 1 ) )
REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
CALL SSCAL( N, REC, VR, 1 )
CALL SSCAL( N, REC, VI, 1 )
END IF
*
IF( RIGHTV ) THEN
*
* LU decomposition with partial pivoting of B, replacing zero
* pivots by EPS3.
*
* The imaginary part of the (i,j)-th element of U is stored in
* B(j+1,i).
*
B( 2, 1 ) = -WI
DO 140 I = 2, N
B( I+1, 1 ) = ZERO
140 CONTINUE
*
DO 170 I = 1, N - 1
ABSBII = SLAPY2( B( I, I ), B( I+1, I ) )
EI = H( I+1, I )
IF( ABSBII.LT.ABS( EI ) ) THEN
*
* Interchange rows and eliminate.
*
XR = B( I, I ) / EI
XI = B( I+1, I ) / EI
B( I, I ) = EI
B( I+1, I ) = ZERO
DO 150 J = I + 1, N
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - XR*TEMP
B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
B( I, J ) = TEMP
B( J+1, I ) = ZERO
150 CONTINUE
B( I+2, I ) = -WI
B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
ELSE
*
* Eliminate without interchanging rows.
*
IF( ABSBII.EQ.ZERO ) THEN
B( I, I ) = EPS3
B( I+1, I ) = ZERO
ABSBII = EPS3
END IF
EI = ( EI / ABSBII ) / ABSBII
XR = B( I, I )*EI
XI = -B( I+1, I )*EI
DO 160 J = I + 1, N
B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
$ XI*B( J+1, I )
B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
160 CONTINUE
B( I+2, I+1 ) = B( I+2, I+1 ) - WI
END IF
*
* Compute 1-norm of offdiagonal elements of i-th row.
*
WORK( I ) = SASUM( N-I, B( I, I+1 ), LDB ) +
$ SASUM( N-I, B( I+2, I ), 1 )
170 CONTINUE
IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
$ B( N, N ) = EPS3
WORK( N ) = ZERO
*
I1 = N
I2 = 1
I3 = -1
ELSE
*
* UL decomposition with partial pivoting of conjg(B),
* replacing zero pivots by EPS3.
*
* The imaginary part of the (i,j)-th element of U is stored in
* B(j+1,i).
*
B( N+1, N ) = WI
DO 180 J = 1, N - 1
B( N+1, J ) = ZERO
180 CONTINUE
*
DO 210 J = N, 2, -1
EJ = H( J, J-1 )
ABSBJJ = SLAPY2( B( J, J ), B( J+1, J ) )
IF( ABSBJJ.LT.ABS( EJ ) ) THEN
*
* Interchange columns and eliminate
*
XR = B( J, J ) / EJ
XI = B( J+1, J ) / EJ
B( J, J ) = EJ
B( J+1, J ) = ZERO
DO 190 I = 1, J - 1
TEMP = B( I, J-1 )
B( I, J-1 ) = B( I, J ) - XR*TEMP
B( J, I ) = B( J+1, I ) - XI*TEMP
B( I, J ) = TEMP
B( J+1, I ) = ZERO
190 CONTINUE
B( J+1, J-1 ) = WI
B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
B( J, J-1 ) = B( J, J-1 ) - XR*WI
ELSE
*
* Eliminate without interchange.
*
IF( ABSBJJ.EQ.ZERO ) THEN
B( J, J ) = EPS3
B( J+1, J ) = ZERO
ABSBJJ = EPS3
END IF
EJ = ( EJ / ABSBJJ ) / ABSBJJ
XR = B( J, J )*EJ
XI = -B( J+1, J )*EJ
DO 200 I = 1, J - 1
B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
$ XI*B( J+1, I )
B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
200 CONTINUE
B( J, J-1 ) = B( J, J-1 ) + WI
END IF
*
* Compute 1-norm of offdiagonal elements of j-th column.
*
WORK( J ) = SASUM( J-1, B( 1, J ), 1 ) +
$ SASUM( J-1, B( J+1, 1 ), LDB )
210 CONTINUE
IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
$ B( 1, 1 ) = EPS3
WORK( 1 ) = ZERO
*
I1 = 1
I2 = N
I3 = 1
END IF
*
DO 270 ITS = 1, N
SCALE = ONE
VMAX = ONE
VCRIT = BIGNUM
*
* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
* overwriting (xr,xi) on (vr,vi).
*
DO 250 I = I1, I2, I3
*
IF( WORK( I ).GT.VCRIT ) THEN
REC = ONE / VMAX
CALL SSCAL( N, REC, VR, 1 )
CALL SSCAL( N, REC, VI, 1 )
SCALE = SCALE*REC
VMAX = ONE
VCRIT = BIGNUM
END IF
*
XR = VR( I )
XI = VI( I )
IF( RIGHTV ) THEN
DO 220 J = I + 1, N
XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
220 CONTINUE
ELSE
DO 230 J = 1, I - 1
XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
230 CONTINUE
END IF
*
W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
IF( W.GT.SMLNUM ) THEN
IF( W.LT.ONE ) THEN
W1 = ABS( XR ) + ABS( XI )
IF( W1.GT.W*BIGNUM ) THEN
REC = ONE / W1
CALL SSCAL( N, REC, VR, 1 )
CALL SSCAL( N, REC, VI, 1 )
XR = VR( I )
XI = VI( I )
SCALE = SCALE*REC
VMAX = VMAX*REC
END IF
END IF
*
* Divide by diagonal element of B.
*
CALL SLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
$ VI( I ) )
VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
VCRIT = BIGNUM / VMAX
ELSE
DO 240 J = 1, N
VR( J ) = ZERO
VI( J ) = ZERO
240 CONTINUE
VR( I ) = ONE
VI( I ) = ONE
SCALE = ZERO
VMAX = ONE
VCRIT = BIGNUM
END IF
250 CONTINUE
*
* Test for sufficient growth in the norm of (VR,VI).
*
VNORM = SASUM( N, VR, 1 ) + SASUM( N, VI, 1 )
IF( VNORM.GE.GROWTO*SCALE )
$ GO TO 280
*
* Choose a new orthogonal starting vector and try again.
*
Y = EPS3 / ( ROOTN+ONE )
VR( 1 ) = EPS3
VI( 1 ) = ZERO
*
DO 260 I = 2, N
VR( I ) = Y
VI( I ) = ZERO
260 CONTINUE
VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
270 CONTINUE
*
* Failure to find eigenvector in N iterations
*
INFO = 1
*
280 CONTINUE
*
* Normalize eigenvector.
*
VNORM = ZERO
DO 290 I = 1, N
VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
290 CONTINUE
CALL SSCAL( N, ONE / VNORM, VR, 1 )
CALL SSCAL( N, ONE / VNORM, VI, 1 )
*
END IF
*
RETURN
*
* End of SLAEIN
*
END
|