summaryrefslogtreecommitdiff
path: root/SRC/slaed5.f
blob: 23b37359e23d737f3a4f02f10afc6f3ad1148b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
      SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            I
      REAL               DLAM, RHO
*     ..
*     .. Array Arguments ..
      REAL               D( 2 ), DELTA( 2 ), Z( 2 )
*     ..
*
*  Purpose
*  =======
*
*  This subroutine computes the I-th eigenvalue of a symmetric rank-one
*  modification of a 2-by-2 diagonal matrix
*
*             diag( D )  +  RHO *  Z * transpose(Z) .
*
*  The diagonal elements in the array D are assumed to satisfy
*
*             D(i) < D(j)  for  i < j .
*
*  We also assume RHO > 0 and that the Euclidean norm of the vector
*  Z is one.
*
*  Arguments
*  =========
*
*  I      (input) INTEGER
*         The index of the eigenvalue to be computed.  I = 1 or I = 2.
*
*  D      (input) REAL array, dimension (2)
*         The original eigenvalues.  We assume D(1) < D(2).
*
*  Z      (input) REAL array, dimension (2)
*         The components of the updating vector.
*
*  DELTA  (output) REAL array, dimension (2)
*         The vector DELTA contains the information necessary
*         to construct the eigenvectors.
*
*  RHO    (input) REAL
*         The scalar in the symmetric updating formula.
*
*  DLAM   (output) REAL
*         The computed lambda_I, the I-th updated eigenvalue.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, FOUR
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   FOUR = 4.0E0 )
*     ..
*     .. Local Scalars ..
      REAL               B, C, DEL, TAU, TEMP, W
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      DEL = D( 2 ) - D( 1 )
      IF( I.EQ.1 ) THEN
         W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
         IF( W.GT.ZERO ) THEN
            B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DEL
*
*           B > ZERO, always
*
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
            DLAM = D( 1 ) + TAU
            DELTA( 1 ) = -Z( 1 ) / TAU
            DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DEL
            IF( B.GT.ZERO ) THEN
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
            DLAM = D( 2 ) + TAU
            DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
            DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
         DELTA( 1 ) = DELTA( 1 ) / TEMP
         DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
*
*     Now I=2
*
         B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DEL
         IF( B.GT.ZERO ) THEN
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
         DLAM = D( 2 ) + TAU
         DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
         DELTA( 2 ) = -Z( 2 ) / TAU
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
         DELTA( 1 ) = DELTA( 1 ) / TEMP
         DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
*
*     End OF SLAED5
*
      END