1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER I
REAL DLAM, RHO
* ..
* .. Array Arguments ..
REAL D( 2 ), DELTA( 2 ), Z( 2 )
* ..
*
* Purpose
* =======
*
* This subroutine computes the I-th eigenvalue of a symmetric rank-one
* modification of a 2-by-2 diagonal matrix
*
* diag( D ) + RHO * Z * transpose(Z) .
*
* The diagonal elements in the array D are assumed to satisfy
*
* D(i) < D(j) for i < j .
*
* We also assume RHO > 0 and that the Euclidean norm of the vector
* Z is one.
*
* Arguments
* =========
*
* I (input) INTEGER
* The index of the eigenvalue to be computed. I = 1 or I = 2.
*
* D (input) REAL array, dimension (2)
* The original eigenvalues. We assume D(1) < D(2).
*
* Z (input) REAL array, dimension (2)
* The components of the updating vector.
*
* DELTA (output) REAL array, dimension (2)
* The vector DELTA contains the information necessary
* to construct the eigenvectors.
*
* RHO (input) REAL
* The scalar in the symmetric updating formula.
*
* DLAM (output) REAL
* The computed lambda_I, the I-th updated eigenvalue.
*
* Further Details
* ===============
*
* Based on contributions by
* Ren-Cang Li, Computer Science Division, University of California
* at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO, FOUR
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
$ FOUR = 4.0E0 )
* ..
* .. Local Scalars ..
REAL B, C, DEL, TAU, TEMP, W
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
DEL = D( 2 ) - D( 1 )
IF( I.EQ.1 ) THEN
W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
IF( W.GT.ZERO ) THEN
B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 1 )*Z( 1 )*DEL
*
* B > ZERO, always
*
TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
DLAM = D( 1 ) + TAU
DELTA( 1 ) = -Z( 1 ) / TAU
DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
ELSE
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DEL
IF( B.GT.ZERO ) THEN
TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
ELSE
TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
END IF
DLAM = D( 2 ) + TAU
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU
END IF
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP
ELSE
*
* Now I=2
*
B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DEL
IF( B.GT.ZERO ) THEN
TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
ELSE
TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
END IF
DLAM = D( 2 ) + TAU
DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
DELTA( 2 ) = -Z( 2 ) / TAU
TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
DELTA( 1 ) = DELTA( 1 ) / TEMP
DELTA( 2 ) = DELTA( 2 ) / TEMP
END IF
RETURN
*
* End OF SLAED5
*
END
|