summaryrefslogtreecommitdiff
path: root/SRC/slaebz.f
blob: 5e230827da95ddc1db0e7e3846f255a1ba967442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
*> \brief \b SLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAEBZ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaebz.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaebz.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaebz.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
*                          RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
*                          NAB, WORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
*       REAL               ABSTOL, PIVMIN, RELTOL
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
*       REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
*      $                   WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLAEBZ contains the iteration loops which compute and use the
*> function N(w), which is the count of eigenvalues of a symmetric
*> tridiagonal matrix T less than or equal to its argument  w.  It
*> performs a choice of two types of loops:
*>
*> IJOB=1, followed by
*> IJOB=2: It takes as input a list of intervals and returns a list of
*>         sufficiently small intervals whose union contains the same
*>         eigenvalues as the union of the original intervals.
*>         The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
*>         The output interval (AB(j,1),AB(j,2)] will contain
*>         eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
*>
*> IJOB=3: It performs a binary search in each input interval
*>         (AB(j,1),AB(j,2)] for a point  w(j)  such that
*>         N(w(j))=NVAL(j), and uses  C(j)  as the starting point of
*>         the search.  If such a w(j) is found, then on output
*>         AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output
*>         (AB(j,1),AB(j,2)] will be a small interval containing the
*>         point where N(w) jumps through NVAL(j), unless that point
*>         lies outside the initial interval.
*>
*> Note that the intervals are in all cases half-open intervals,
*> i.e., of the form  (a,b] , which includes  b  but not  a .
*>
*> To avoid underflow, the matrix should be scaled so that its largest
*> element is no greater than  overflow**(1/2) * underflow**(1/4)
*> in absolute value.  To assure the most accurate computation
*> of small eigenvalues, the matrix should be scaled to be
*> not much smaller than that, either.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford
*> University, July 21, 1966
*>
*> Note: the arguments are, in general, *not* checked for unreasonable
*> values.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] IJOB
*> \verbatim
*>          IJOB is INTEGER
*>          Specifies what is to be done:
*>          = 1:  Compute NAB for the initial intervals.
*>          = 2:  Perform bisection iteration to find eigenvalues of T.
*>          = 3:  Perform bisection iteration to invert N(w), i.e.,
*>                to find a point which has a specified number of
*>                eigenvalues of T to its left.
*>          Other values will cause SLAEBZ to return with INFO=-1.
*> \endverbatim
*>
*> \param[in] NITMAX
*> \verbatim
*>          NITMAX is INTEGER
*>          The maximum number of "levels" of bisection to be
*>          performed, i.e., an interval of width W will not be made
*>          smaller than 2^(-NITMAX) * W.  If not all intervals
*>          have converged after NITMAX iterations, then INFO is set
*>          to the number of non-converged intervals.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension n of the tridiagonal matrix T.  It must be at
*>          least 1.
*> \endverbatim
*>
*> \param[in] MMAX
*> \verbatim
*>          MMAX is INTEGER
*>          The maximum number of intervals.  If more than MMAX intervals
*>          are generated, then SLAEBZ will quit with INFO=MMAX+1.
*> \endverbatim
*>
*> \param[in] MINP
*> \verbatim
*>          MINP is INTEGER
*>          The initial number of intervals.  It may not be greater than
*>          MMAX.
*> \endverbatim
*>
*> \param[in] NBMIN
*> \verbatim
*>          NBMIN is INTEGER
*>          The smallest number of intervals that should be processed
*>          using a vector loop.  If zero, then only the scalar loop
*>          will be used.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*>          ABSTOL is REAL
*>          The minimum (absolute) width of an interval.  When an
*>          interval is narrower than ABSTOL, or than RELTOL times the
*>          larger (in magnitude) endpoint, then it is considered to be
*>          sufficiently small, i.e., converged.  This must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*>          RELTOL is REAL
*>          The minimum relative width of an interval.  When an interval
*>          is narrower than ABSTOL, or than RELTOL times the larger (in
*>          magnitude) endpoint, then it is considered to be
*>          sufficiently small, i.e., converged.  Note: this should
*>          always be at least radix*machine epsilon.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*>          PIVMIN is REAL
*>          The minimum absolute value of a "pivot" in the Sturm
*>          sequence loop.
*>          This must be at least  max |e(j)**2|*safe_min  and at
*>          least safe_min, where safe_min is at least
*>          the smallest number that can divide one without overflow.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is REAL array, dimension (N)
*>          The offdiagonal elements of the tridiagonal matrix T in
*>          positions 1 through N-1.  E(N) is arbitrary.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*>          E2 is REAL array, dimension (N)
*>          The squares of the offdiagonal elements of the tridiagonal
*>          matrix T.  E2(N) is ignored.
*> \endverbatim
*>
*> \param[in,out] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (MINP)
*>          If IJOB=1 or 2, not referenced.
*>          If IJOB=3, the desired values of N(w).  The elements of NVAL
*>          will be reordered to correspond with the intervals in AB.
*>          Thus, NVAL(j) on output will not, in general be the same as
*>          NVAL(j) on input, but it will correspond with the interval
*>          (AB(j,1),AB(j,2)] on output.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is REAL array, dimension (MMAX,2)
*>          The endpoints of the intervals.  AB(j,1) is  a(j), the left
*>          endpoint of the j-th interval, and AB(j,2) is b(j), the
*>          right endpoint of the j-th interval.  The input intervals
*>          will, in general, be modified, split, and reordered by the
*>          calculation.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension (MMAX)
*>          If IJOB=1, ignored.
*>          If IJOB=2, workspace.
*>          If IJOB=3, then on input C(j) should be initialized to the
*>          first search point in the binary search.
*> \endverbatim
*>
*> \param[out] MOUT
*> \verbatim
*>          MOUT is INTEGER
*>          If IJOB=1, the number of eigenvalues in the intervals.
*>          If IJOB=2 or 3, the number of intervals output.
*>          If IJOB=3, MOUT will equal MINP.
*> \endverbatim
*>
*> \param[in,out] NAB
*> \verbatim
*>          NAB is INTEGER array, dimension (MMAX,2)
*>          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
*>          If IJOB=2, then on input, NAB(i,j) should be set.  It must
*>             satisfy the condition:
*>             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
*>             which means that in interval i only eigenvalues
*>             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,
*>             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
*>             IJOB=1.
*>             On output, NAB(i,j) will contain
*>             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
*>             the input interval that the output interval
*>             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
*>             the input values of NAB(k,1) and NAB(k,2).
*>          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
*>             unless N(w) > NVAL(i) for all search points  w , in which
*>             case NAB(i,1) will not be modified, i.e., the output
*>             value will be the same as the input value (modulo
*>             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
*>             for all search points  w , in which case NAB(i,2) will
*>             not be modified.  Normally, NAB should be set to some
*>             distinctive value(s) before SLAEBZ is called.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MMAX)
*>          Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (MMAX)
*>          Workspace.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:       All intervals converged.
*>          = 1--MMAX: The last INFO intervals did not converge.
*>          = MMAX+1:  More than MMAX intervals were generated.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>      This routine is intended to be called only by other LAPACK
*>  routines, thus the interface is less user-friendly.  It is intended
*>  for two purposes:
*>
*>  (a) finding eigenvalues.  In this case, SLAEBZ should have one or
*>      more initial intervals set up in AB, and SLAEBZ should be called
*>      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.
*>      Intervals with no eigenvalues would usually be thrown out at
*>      this point.  Also, if not all the eigenvalues in an interval i
*>      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
*>      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
*>      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX
*>      no smaller than the value of MOUT returned by the call with
*>      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1
*>      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
*>      tolerance specified by ABSTOL and RELTOL.
*>
*>  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
*>      In this case, start with a Gershgorin interval  (a,b).  Set up
*>      AB to contain 2 search intervals, both initially (a,b).  One
*>      NVAL element should contain  f-1  and the other should contain  l
*>      , while C should contain a and b, resp.  NAB(i,1) should be -1
*>      and NAB(i,2) should be N+1, to flag an error if the desired
*>      interval does not lie in (a,b).  SLAEBZ is then called with
*>      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --
*>      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
*>      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
*>      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and
*>      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and
*>      w(l-r)=...=w(l+k) are handled similarly.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
     $                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
     $                   NAB, WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
      REAL               ABSTOL, PIVMIN, RELTOL
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
      REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, TWO, HALF
      PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0,
     $                   HALF = 1.0E0 / TWO )
*     ..
*     .. Local Scalars ..
      INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
     $                   KLNEW
      REAL               TMP1, TMP2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Check for Errors
*
      INFO = 0
      IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
         INFO = -1
         RETURN
      END IF
*
*     Initialize NAB
*
      IF( IJOB.EQ.1 ) THEN
*
*        Compute the number of eigenvalues in the initial intervals.
*
         MOUT = 0
         DO 30 JI = 1, MINP
            DO 20 JP = 1, 2
               TMP1 = D( 1 ) - AB( JI, JP )
               IF( ABS( TMP1 ).LT.PIVMIN )
     $            TMP1 = -PIVMIN
               NAB( JI, JP ) = 0
               IF( TMP1.LE.ZERO )
     $            NAB( JI, JP ) = 1
*
               DO 10 J = 2, N
                  TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
                  IF( ABS( TMP1 ).LT.PIVMIN )
     $               TMP1 = -PIVMIN
                  IF( TMP1.LE.ZERO )
     $               NAB( JI, JP ) = NAB( JI, JP ) + 1
   10          CONTINUE
   20       CONTINUE
            MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
   30    CONTINUE
         RETURN
      END IF
*
*     Initialize for loop
*
*     KF and KL have the following meaning:
*        Intervals 1,...,KF-1 have converged.
*        Intervals KF,...,KL  still need to be refined.
*
      KF = 1
      KL = MINP
*
*     If IJOB=2, initialize C.
*     If IJOB=3, use the user-supplied starting point.
*
      IF( IJOB.EQ.2 ) THEN
         DO 40 JI = 1, MINP
            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
   40    CONTINUE
      END IF
*
*     Iteration loop
*
      DO 130 JIT = 1, NITMAX
*
*        Loop over intervals
*
         IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
*
*           Begin of Parallel Version of the loop
*
            DO 60 JI = KF, KL
*
*              Compute N(c), the number of eigenvalues less than c
*
               WORK( JI ) = D( 1 ) - C( JI )
               IWORK( JI ) = 0
               IF( WORK( JI ).LE.PIVMIN ) THEN
                  IWORK( JI ) = 1
                  WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
               END IF
*
               DO 50 J = 2, N
                  WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
                  IF( WORK( JI ).LE.PIVMIN ) THEN
                     IWORK( JI ) = IWORK( JI ) + 1
                     WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
                  END IF
   50          CONTINUE
   60       CONTINUE
*
            IF( IJOB.LE.2 ) THEN
*
*              IJOB=2: Choose all intervals containing eigenvalues.
*
               KLNEW = KL
               DO 70 JI = KF, KL
*
*                 Insure that N(w) is monotone
*
                  IWORK( JI ) = MIN( NAB( JI, 2 ),
     $                          MAX( NAB( JI, 1 ), IWORK( JI ) ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
                  IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
                     AB( JI, 2 ) = C( JI )
*
                  ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
                     AB( JI, 1 ) = C( JI )
                  ELSE
                     KLNEW = KLNEW + 1
                     IF( KLNEW.LE.MMAX ) THEN
*
*                       Eigenvalue in both intervals -- add upper to
*                       queue.
*
                        AB( KLNEW, 2 ) = AB( JI, 2 )
                        NAB( KLNEW, 2 ) = NAB( JI, 2 )
                        AB( KLNEW, 1 ) = C( JI )
                        NAB( KLNEW, 1 ) = IWORK( JI )
                        AB( JI, 2 ) = C( JI )
                        NAB( JI, 2 ) = IWORK( JI )
                     ELSE
                        INFO = MMAX + 1
                     END IF
                  END IF
   70          CONTINUE
               IF( INFO.NE.0 )
     $            RETURN
               KL = KLNEW
            ELSE
*
*              IJOB=3: Binary search.  Keep only the interval containing
*                      w   s.t. N(w) = NVAL
*
               DO 80 JI = KF, KL
                  IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
                     AB( JI, 1 ) = C( JI )
                     NAB( JI, 1 ) = IWORK( JI )
                  END IF
                  IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
                     AB( JI, 2 ) = C( JI )
                     NAB( JI, 2 ) = IWORK( JI )
                  END IF
   80          CONTINUE
            END IF
*
         ELSE
*
*           End of Parallel Version of the loop
*
*           Begin of Serial Version of the loop
*
            KLNEW = KL
            DO 100 JI = KF, KL
*
*              Compute N(w), the number of eigenvalues less than w
*
               TMP1 = C( JI )
               TMP2 = D( 1 ) - TMP1
               ITMP1 = 0
               IF( TMP2.LE.PIVMIN ) THEN
                  ITMP1 = 1
                  TMP2 = MIN( TMP2, -PIVMIN )
               END IF
*
               DO 90 J = 2, N
                  TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
                  IF( TMP2.LE.PIVMIN ) THEN
                     ITMP1 = ITMP1 + 1
                     TMP2 = MIN( TMP2, -PIVMIN )
                  END IF
   90          CONTINUE
*
               IF( IJOB.LE.2 ) THEN
*
*                 IJOB=2: Choose all intervals containing eigenvalues.
*
*                 Insure that N(w) is monotone
*
                  ITMP1 = MIN( NAB( JI, 2 ),
     $                    MAX( NAB( JI, 1 ), ITMP1 ) )
*
*                 Update the Queue -- add intervals if both halves
*                 contain eigenvalues.
*
                  IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
*
*                    No eigenvalue in the upper interval:
*                    just use the lower interval.
*
                     AB( JI, 2 ) = TMP1
*
                  ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
*
*                    No eigenvalue in the lower interval:
*                    just use the upper interval.
*
                     AB( JI, 1 ) = TMP1
                  ELSE IF( KLNEW.LT.MMAX ) THEN
*
*                    Eigenvalue in both intervals -- add upper to queue.
*
                     KLNEW = KLNEW + 1
                     AB( KLNEW, 2 ) = AB( JI, 2 )
                     NAB( KLNEW, 2 ) = NAB( JI, 2 )
                     AB( KLNEW, 1 ) = TMP1
                     NAB( KLNEW, 1 ) = ITMP1
                     AB( JI, 2 ) = TMP1
                     NAB( JI, 2 ) = ITMP1
                  ELSE
                     INFO = MMAX + 1
                     RETURN
                  END IF
               ELSE
*
*                 IJOB=3: Binary search.  Keep only the interval
*                         containing  w  s.t. N(w) = NVAL
*
                  IF( ITMP1.LE.NVAL( JI ) ) THEN
                     AB( JI, 1 ) = TMP1
                     NAB( JI, 1 ) = ITMP1
                  END IF
                  IF( ITMP1.GE.NVAL( JI ) ) THEN
                     AB( JI, 2 ) = TMP1
                     NAB( JI, 2 ) = ITMP1
                  END IF
               END IF
  100       CONTINUE
            KL = KLNEW
*
         END IF
*
*        Check for convergence
*
         KFNEW = KF
         DO 110 JI = KF, KL
            TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
            TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
            IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
     $          NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
*
*              Converged -- Swap with position KFNEW,
*                           then increment KFNEW
*
               IF( JI.GT.KFNEW ) THEN
                  TMP1 = AB( JI, 1 )
                  TMP2 = AB( JI, 2 )
                  ITMP1 = NAB( JI, 1 )
                  ITMP2 = NAB( JI, 2 )
                  AB( JI, 1 ) = AB( KFNEW, 1 )
                  AB( JI, 2 ) = AB( KFNEW, 2 )
                  NAB( JI, 1 ) = NAB( KFNEW, 1 )
                  NAB( JI, 2 ) = NAB( KFNEW, 2 )
                  AB( KFNEW, 1 ) = TMP1
                  AB( KFNEW, 2 ) = TMP2
                  NAB( KFNEW, 1 ) = ITMP1
                  NAB( KFNEW, 2 ) = ITMP2
                  IF( IJOB.EQ.3 ) THEN
                     ITMP1 = NVAL( JI )
                     NVAL( JI ) = NVAL( KFNEW )
                     NVAL( KFNEW ) = ITMP1
                  END IF
               END IF
               KFNEW = KFNEW + 1
            END IF
  110    CONTINUE
         KF = KFNEW
*
*        Choose Midpoints
*
         DO 120 JI = KF, KL
            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
  120    CONTINUE
*
*        If no more intervals to refine, quit.
*
         IF( KF.GT.KL )
     $      GO TO 140
  130 CONTINUE
*
*     Converged
*
  140 CONTINUE
      INFO = MAX( KL+1-KF, 0 )
      MOUT = KL
*
      RETURN
*
*     End of SLAEBZ
*
      END