1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
*> \brief \b SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLACN2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slacn2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slacn2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slacn2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
*
* .. Scalar Arguments ..
* INTEGER KASE, N
* REAL EST
* ..
* .. Array Arguments ..
* INTEGER ISGN( * ), ISAVE( 3 )
* REAL V( * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLACN2 estimates the 1-norm of a square, real matrix A.
*> Reverse communication is used for evaluating matrix-vector products.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix. N >= 1.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is REAL array, dimension (N)
*> On the final return, V = A*W, where EST = norm(V)/norm(W)
*> (W is not returned).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is REAL array, dimension (N)
*> On an intermediate return, X should be overwritten by
*> A * X, if KASE=1,
*> A**T * X, if KASE=2,
*> and SLACN2 must be re-called with all the other parameters
*> unchanged.
*> \endverbatim
*>
*> \param[out] ISGN
*> \verbatim
*> ISGN is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[in,out] EST
*> \verbatim
*> EST is REAL
*> On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
*> unchanged from the previous call to SLACN2.
*> On exit, EST is an estimate (a lower bound) for norm(A).
*> \endverbatim
*>
*> \param[in,out] KASE
*> \verbatim
*> KASE is INTEGER
*> On the initial call to SLACN2, KASE should be 0.
*> On an intermediate return, KASE will be 1 or 2, indicating
*> whether X should be overwritten by A * X or A**T * X.
*> On the final return from SLACN2, KASE will again be 0.
*> \endverbatim
*>
*> \param[in,out] ISAVE
*> \verbatim
*> ISAVE is INTEGER array, dimension (3)
*> ISAVE is used to save variables between calls to SLACN2
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Originally named SONEST, dated March 16, 1988.
*>
*> This is a thread safe version of SLACON, which uses the array ISAVE
*> in place of a SAVE statement, as follows:
*>
*> SLACON SLACN2
*> JUMP ISAVE(1)
*> J ISAVE(2)
*> ITER ISAVE(3)
*> \endverbatim
*
*> \par Contributors:
* ==================
*>
*> Nick Higham, University of Manchester
*
*> \par References:
* ================
*>
*> N.J. Higham, "FORTRAN codes for estimating the one-norm of
*> a real or complex matrix, with applications to condition estimation",
*> ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*>
* =====================================================================
SUBROUTINE SLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER KASE, N
REAL EST
* ..
* .. Array Arguments ..
INTEGER ISGN( * ), ISAVE( 3 )
REAL V( * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, JLAST
REAL ALTSGN, ESTOLD, TEMP
* ..
* .. External Functions ..
INTEGER ISAMAX
REAL SASUM
EXTERNAL ISAMAX, SASUM
* ..
* .. External Subroutines ..
EXTERNAL SCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, NINT, REAL, SIGN
* ..
* .. Executable Statements ..
*
IF( KASE.EQ.0 ) THEN
DO 10 I = 1, N
X( I ) = ONE / REAL( N )
10 CONTINUE
KASE = 1
ISAVE( 1 ) = 1
RETURN
END IF
*
GO TO ( 20, 40, 70, 110, 140 )ISAVE( 1 )
*
* ................ ENTRY (ISAVE( 1 ) = 1)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
*
20 CONTINUE
IF( N.EQ.1 ) THEN
V( 1 ) = X( 1 )
EST = ABS( V( 1 ) )
* ... QUIT
GO TO 150
END IF
EST = SASUM( N, X, 1 )
*
DO 30 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
30 CONTINUE
KASE = 2
ISAVE( 1 ) = 2
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 2)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
40 CONTINUE
ISAVE( 2 ) = ISAMAX( N, X, 1 )
ISAVE( 3 ) = 2
*
* MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
*
50 CONTINUE
DO 60 I = 1, N
X( I ) = ZERO
60 CONTINUE
X( ISAVE( 2 ) ) = ONE
KASE = 1
ISAVE( 1 ) = 3
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 3)
* X HAS BEEN OVERWRITTEN BY A*X.
*
70 CONTINUE
CALL SCOPY( N, X, 1, V, 1 )
ESTOLD = EST
EST = SASUM( N, V, 1 )
DO 80 I = 1, N
IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
$ GO TO 90
80 CONTINUE
* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
GO TO 120
*
90 CONTINUE
* TEST FOR CYCLING.
IF( EST.LE.ESTOLD )
$ GO TO 120
*
DO 100 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
100 CONTINUE
KASE = 2
ISAVE( 1 ) = 4
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 4)
* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
110 CONTINUE
JLAST = ISAVE( 2 )
ISAVE( 2 ) = ISAMAX( N, X, 1 )
IF( ( X( JLAST ).NE.ABS( X( ISAVE( 2 ) ) ) ) .AND.
$ ( ISAVE( 3 ).LT.ITMAX ) ) THEN
ISAVE( 3 ) = ISAVE( 3 ) + 1
GO TO 50
END IF
*
* ITERATION COMPLETE. FINAL STAGE.
*
120 CONTINUE
ALTSGN = ONE
DO 130 I = 1, N
X( I ) = ALTSGN*( ONE+REAL( I-1 ) / REAL( N-1 ) )
ALTSGN = -ALTSGN
130 CONTINUE
KASE = 1
ISAVE( 1 ) = 5
RETURN
*
* ................ ENTRY (ISAVE( 1 ) = 5)
* X HAS BEEN OVERWRITTEN BY A*X.
*
140 CONTINUE
TEMP = TWO*( SASUM( N, X, 1 ) / REAL( 3*N ) )
IF( TEMP.GT.EST ) THEN
CALL SCOPY( N, X, 1, V, 1 )
EST = TEMP
END IF
*
150 CONTINUE
KASE = 0
RETURN
*
* End of SLACN2
*
END
|