summaryrefslogtreecommitdiff
path: root/SRC/sgtsv.f
blob: 2bc4d278b310da1c3231a72a7174b566cc5b1e32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
*> \brief <b> SGTSV computes the solution to system of linear equations A * X = B for GT matrices <b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGTSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGTSV  solves the equation
*>
*>    A*X = B,
*>
*> where A is an n by n tridiagonal matrix, by Gaussian elimination with
*> partial pivoting.
*>
*> Note that the equation  A**T*X = B  may be solved by interchanging the
*> order of the arguments DU and DL.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] DL
*> \verbatim
*>          DL is REAL array, dimension (N-1)
*>          On entry, DL must contain the (n-1) sub-diagonal elements of
*>          A.
*>
*>          On exit, DL is overwritten by the (n-2) elements of the
*>          second super-diagonal of the upper triangular matrix U from
*>          the LU factorization of A, in DL(1), ..., DL(n-2).
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          On entry, D must contain the diagonal elements of A.
*>
*>          On exit, D is overwritten by the n diagonal elements of U.
*> \endverbatim
*>
*> \param[in,out] DU
*> \verbatim
*>          DU is REAL array, dimension (N-1)
*>          On entry, DU must contain the (n-1) super-diagonal elements
*>          of A.
*>
*>          On exit, DU is overwritten by the (n-1) elements of the first
*>          super-diagonal of U.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the N by NRHS matrix of right hand side matrix B.
*>          On exit, if INFO = 0, the N by NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
*>               has not been computed.  The factorization has not been
*>               completed unless i = N.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup realGTsolve
*
*  =====================================================================
      SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*
*  -- LAPACK driver routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               B( LDB, * ), D( * ), DL( * ), DU( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               FACT, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGTSV ', -INFO )
         RETURN
      END IF
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( NRHS.EQ.1 ) THEN
         DO 10 I = 1, N - 2
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
*              No row interchange required
*
               IF( D( I ).NE.ZERO ) THEN
                  FACT = DL( I ) / D( I )
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
               ELSE
                  INFO = I
                  RETURN
               END IF
               DL( I ) = ZERO
            ELSE
*
*              Interchange rows I and I+1
*
               FACT = D( I ) / DL( I )
               D( I ) = DL( I )
               TEMP = D( I+1 )
               D( I+1 ) = DU( I ) - FACT*TEMP
               DL( I ) = DU( I+1 )
               DU( I+1 ) = -FACT*DL( I )
               DU( I ) = TEMP
               TEMP = B( I, 1 )
               B( I, 1 ) = B( I+1, 1 )
               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
            END IF
   10    CONTINUE
         IF( N.GT.1 ) THEN
            I = N - 1
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
               IF( D( I ).NE.ZERO ) THEN
                  FACT = DL( I ) / D( I )
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
                  B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
               ELSE
                  INFO = I
                  RETURN
               END IF
            ELSE
               FACT = D( I ) / DL( I )
               D( I ) = DL( I )
               TEMP = D( I+1 )
               D( I+1 ) = DU( I ) - FACT*TEMP
               DU( I ) = TEMP
               TEMP = B( I, 1 )
               B( I, 1 ) = B( I+1, 1 )
               B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
            END IF
         END IF
         IF( D( N ).EQ.ZERO ) THEN
            INFO = N
            RETURN
         END IF
      ELSE
         DO 40 I = 1, N - 2
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
*              No row interchange required
*
               IF( D( I ).NE.ZERO ) THEN
                  FACT = DL( I ) / D( I )
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
                  DO 20 J = 1, NRHS
                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
   20             CONTINUE
               ELSE
                  INFO = I
                  RETURN
               END IF
               DL( I ) = ZERO
            ELSE
*
*              Interchange rows I and I+1
*
               FACT = D( I ) / DL( I )
               D( I ) = DL( I )
               TEMP = D( I+1 )
               D( I+1 ) = DU( I ) - FACT*TEMP
               DL( I ) = DU( I+1 )
               DU( I+1 ) = -FACT*DL( I )
               DU( I ) = TEMP
               DO 30 J = 1, NRHS
                  TEMP = B( I, J )
                  B( I, J ) = B( I+1, J )
                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
   30          CONTINUE
            END IF
   40    CONTINUE
         IF( N.GT.1 ) THEN
            I = N - 1
            IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
               IF( D( I ).NE.ZERO ) THEN
                  FACT = DL( I ) / D( I )
                  D( I+1 ) = D( I+1 ) - FACT*DU( I )
                  DO 50 J = 1, NRHS
                     B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
   50             CONTINUE
               ELSE
                  INFO = I
                  RETURN
               END IF
            ELSE
               FACT = D( I ) / DL( I )
               D( I ) = DL( I )
               TEMP = D( I+1 )
               D( I+1 ) = DU( I ) - FACT*TEMP
               DU( I ) = TEMP
               DO 60 J = 1, NRHS
                  TEMP = B( I, J )
                  B( I, J ) = B( I+1, J )
                  B( I+1, J ) = TEMP - FACT*B( I+1, J )
   60          CONTINUE
            END IF
         END IF
         IF( D( N ).EQ.ZERO ) THEN
            INFO = N
            RETURN
         END IF
      END IF
*
*     Back solve with the matrix U from the factorization.
*
      IF( NRHS.LE.2 ) THEN
         J = 1
   70    CONTINUE
         B( N, J ) = B( N, J ) / D( N )
         IF( N.GT.1 )
     $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
         DO 80 I = N - 2, 1, -1
            B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
     $                  B( I+2, J ) ) / D( I )
   80    CONTINUE
         IF( J.LT.NRHS ) THEN
            J = J + 1
            GO TO 70
         END IF
      ELSE
         DO 100 J = 1, NRHS
            B( N, J ) = B( N, J ) / D( N )
            IF( N.GT.1 )
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
     $                       D( N-1 )
            DO 90 I = N - 2, 1, -1
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
     $                     B( I+2, J ) ) / D( I )
   90       CONTINUE
  100    CONTINUE
      END IF
*
      RETURN
*
*     End of SGTSV
*
      END