summaryrefslogtreecommitdiff
path: root/SRC/sgges.f
blob: c6dd5108b7c55d5b6da6e89aa2cef1c26de88b3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
*> \brief <b> SGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SGGES + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
*                         SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
*                         LDVSR, WORK, LWORK, BWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBVSL, JOBVSR, SORT
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
*       ..
*       .. Array Arguments ..
*       LOGICAL            BWORK( * )
*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
*      $                   VSR( LDVSR, * ), WORK( * )
*       ..
*       .. Function Arguments ..
*       LOGICAL            SELCTG
*       EXTERNAL           SELCTG
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
*> the generalized eigenvalues, the generalized real Schur form (S,T),
*> optionally, the left and/or right matrices of Schur vectors (VSL and
*> VSR). This gives the generalized Schur factorization
*>
*>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
*>
*> Optionally, it also orders the eigenvalues so that a selected cluster
*> of eigenvalues appears in the leading diagonal blocks of the upper
*> quasi-triangular matrix S and the upper triangular matrix T.The
*> leading columns of VSL and VSR then form an orthonormal basis for the
*> corresponding left and right eigenspaces (deflating subspaces).
*>
*> (If only the generalized eigenvalues are needed, use the driver
*> SGGEV instead, which is faster.)
*>
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
*> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
*> usually represented as the pair (alpha,beta), as there is a
*> reasonable interpretation for beta=0 or both being zero.
*>
*> A pair of matrices (S,T) is in generalized real Schur form if T is
*> upper triangular with non-negative diagonal and S is block upper
*> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
*> to real generalized eigenvalues, while 2-by-2 blocks of S will be
*> "standardized" by making the corresponding elements of T have the
*> form:
*>         [  a  0  ]
*>         [  0  b  ]
*>
*> and the pair of corresponding 2-by-2 blocks in S and T will have a
*> complex conjugate pair of generalized eigenvalues.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBVSL
*> \verbatim
*>          JOBVSL is CHARACTER*1
*>          = 'N':  do not compute the left Schur vectors;
*>          = 'V':  compute the left Schur vectors.
*> \endverbatim
*>
*> \param[in] JOBVSR
*> \verbatim
*>          JOBVSR is CHARACTER*1
*>          = 'N':  do not compute the right Schur vectors;
*>          = 'V':  compute the right Schur vectors.
*> \endverbatim
*>
*> \param[in] SORT
*> \verbatim
*>          SORT is CHARACTER*1
*>          Specifies whether or not to order the eigenvalues on the
*>          diagonal of the generalized Schur form.
*>          = 'N':  Eigenvalues are not ordered;
*>          = 'S':  Eigenvalues are ordered (see SELCTG);
*> \endverbatim
*>
*> \param[in] SELCTG
*> \verbatim
*>          SELCTG is procedure) LOGICAL FUNCTION of three REAL arguments
*>          SELCTG must be declared EXTERNAL in the calling subroutine.
*>          If SORT = 'N', SELCTG is not referenced.
*>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
*>          to the top left of the Schur form.
*>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
*>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
*>          one of a complex conjugate pair of eigenvalues is selected,
*>          then both complex eigenvalues are selected.
*>
*>          Note that in the ill-conditioned case, a selected complex
*>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
*>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
*>          in this case.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA, N)
*>          On entry, the first of the pair of matrices.
*>          On exit, A has been overwritten by its generalized Schur
*>          form S.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB, N)
*>          On entry, the second of the pair of matrices.
*>          On exit, B has been overwritten by its generalized Schur
*>          form T.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] SDIM
*> \verbatim
*>          SDIM is INTEGER
*>          If SORT = 'N', SDIM = 0.
*>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
*>          for which SELCTG is true.  (Complex conjugate pairs for which
*>          SELCTG is true for either eigenvalue count as 2.)
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*>          ALPHAR is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*>          ALPHAI is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is REAL array, dimension (N)
*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
*>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
*>          form (S,T) that would result if the 2-by-2 diagonal blocks of
*>          the real Schur form of (A,B) were further reduced to
*>          triangular form using 2-by-2 complex unitary transformations.
*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*>          positive, then the j-th and (j+1)-st eigenvalues are a
*>          complex conjugate pair, with ALPHAI(j+1) negative.
*>
*>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*>          may easily over- or underflow, and BETA(j) may even be zero.
*>          Thus, the user should avoid naively computing the ratio.
*>          However, ALPHAR and ALPHAI will be always less than and
*>          usually comparable with norm(A) in magnitude, and BETA always
*>          less than and usually comparable with norm(B).
*> \endverbatim
*>
*> \param[out] VSL
*> \verbatim
*>          VSL is REAL array, dimension (LDVSL,N)
*>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
*>          Not referenced if JOBVSL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSL
*> \verbatim
*>          LDVSL is INTEGER
*>          The leading dimension of the matrix VSL. LDVSL >=1, and
*>          if JOBVSL = 'V', LDVSL >= N.
*> \endverbatim
*>
*> \param[out] VSR
*> \verbatim
*>          VSR is REAL array, dimension (LDVSR,N)
*>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
*>          Not referenced if JOBVSR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSR
*> \verbatim
*>          LDVSR is INTEGER
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
*>          if JOBVSR = 'V', LDVSR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16).
*>          For good performance , LWORK must generally be larger.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*>          BWORK is LOGICAL array, dimension (N)
*>          Not referenced if SORT = 'N'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          = 1,...,N:
*>                The QZ iteration failed.  (A,B) are not in Schur
*>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
*>                be correct for j=INFO+1,...,N.
*>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
*>                =N+2: after reordering, roundoff changed values of
*>                      some complex eigenvalues so that leading
*>                      eigenvalues in the Generalized Schur form no
*>                      longer satisfy SELCTG=.TRUE.  This could also
*>                      be caused due to scaling.
*>                =N+3: reordering failed in STGSEN.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup realGEeigen
*
*  =====================================================================
      SUBROUTINE SGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
     $                  SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
     $                  LDVSR, WORK, LWORK, BWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVSL, JOBVSR, SORT
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
     $                   VSR( LDVSR, * ), WORK( * )
*     ..
*     .. Function Arguments ..
      LOGICAL            SELCTG
      EXTERNAL           SELCTG
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
     $                   LQUERY, LST2SL, WANTST
      INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
     $                   ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
     $                   MINWRK
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
     $                   PVSR, SAFMAX, SAFMIN, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM( 1 )
      REAL               DIF( 2 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLABAD,
     $                   SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGSEN,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVSL, 'N' ) ) THEN
         IJOBVL = 1
         ILVSL = .FALSE.
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
         IJOBVL = 2
         ILVSL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVSL = .FALSE.
      END IF
*
      IF( LSAME( JOBVSR, 'N' ) ) THEN
         IJOBVR = 1
         ILVSR = .FALSE.
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
         IJOBVR = 2
         ILVSR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVSR = .FALSE.
      END IF
*
      WANTST = LSAME( SORT, 'S' )
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
         INFO = -15
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
         INFO = -17
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.GT.0 )THEN
            MINWRK = MAX( 8*N, 6*N + 16 )
            MAXWRK = MINWRK - N +
     $               N*ILAENV( 1, 'SGEQRF', ' ', N, 1, N, 0 )
            MAXWRK = MAX( MAXWRK, MINWRK - N +
     $                    N*ILAENV( 1, 'SORMQR', ' ', N, 1, N, -1 ) )
            IF( ILVSL ) THEN
               MAXWRK = MAX( MAXWRK, MINWRK - N +
     $                       N*ILAENV( 1, 'SORGQR', ' ', N, 1, N, -1 ) )
            END IF
         ELSE
            MINWRK = 1
            MAXWRK = 1
         END IF
         WORK( 1 ) = MAXWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
     $      INFO = -19
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGGES ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SDIM = 0
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SAFMIN = SLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      CALL SLABAD( SAFMIN, SAFMAX )
      SMLNUM = SQRT( SAFMIN ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
      IF( ILASCL )
     $   CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
*     Scale B if max element outside range [SMLNUM,BIGNUM]
*
      BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
      ILBSCL = .FALSE.
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
         BNRMTO = SMLNUM
         ILBSCL = .TRUE.
      ELSE IF( BNRM.GT.BIGNUM ) THEN
         BNRMTO = BIGNUM
         ILBSCL = .TRUE.
      END IF
      IF( ILBSCL )
     $   CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
*     Permute the matrix to make it more nearly triangular
*     (Workspace: need 6*N + 2*N space for storing balancing factors)
*
      ILEFT = 1
      IRIGHT = N + 1
      IWRK = IRIGHT + N
      CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
     $             WORK( IRIGHT ), WORK( IWRK ), IERR )
*
*     Reduce B to triangular form (QR decomposition of B)
*     (Workspace: need N, prefer N*NB)
*
      IROWS = IHI + 1 - ILO
      ICOLS = N + 1 - ILO
      ITAU = IWRK
      IWRK = ITAU + IROWS
      CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
*
*     Apply the orthogonal transformation to matrix A
*     (Workspace: need N, prefer N*NB)
*
      CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
     $             LWORK+1-IWRK, IERR )
*
*     Initialize VSL
*     (Workspace: need N, prefer N*NB)
*
      IF( ILVSL ) THEN
         CALL SLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
         IF( IROWS.GT.1 ) THEN
            CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                   VSL( ILO+1, ILO ), LDVSL )
         END IF
         CALL SORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
      END IF
*
*     Initialize VSR
*
      IF( ILVSR )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
*
*     Reduce to generalized Hessenberg form
*     (Workspace: none needed)
*
      CALL SGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
     $             LDVSL, VSR, LDVSR, IERR )
*
*     Perform QZ algorithm, computing Schur vectors if desired
*     (Workspace: need N)
*
      IWRK = ITAU
      CALL SHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
      IF( IERR.NE.0 ) THEN
         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
            INFO = IERR
         ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
            INFO = IERR - N
         ELSE
            INFO = N + 1
         END IF
         GO TO 40
      END IF
*
*     Sort eigenvalues ALPHA/BETA if desired
*     (Workspace: need 4*N+16 )
*
      SDIM = 0
      IF( WANTST ) THEN
*
*        Undo scaling on eigenvalues before SELCTGing
*
         IF( ILASCL ) THEN
            CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
     $                   IERR )
            CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
     $                   IERR )
         END IF
         IF( ILBSCL )
     $      CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
*
*        Select eigenvalues
*
         DO 10 I = 1, N
            BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
   10    CONTINUE
*
         CALL STGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
     $                ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
     $                PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
     $                IERR )
         IF( IERR.EQ.1 )
     $      INFO = N + 3
*
      END IF
*
*     Apply back-permutation to VSL and VSR
*     (Workspace: none needed)
*
      IF( ILVSL )
     $   CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
     $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
*
      IF( ILVSR )
     $   CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
     $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
*
*     Check if unscaling would cause over/underflow, if so, rescale 
*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of 
*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
*
      IF( ILASCL )THEN
         DO 50 I = 1, N 
            IF( ALPHAI( I ).NE.ZERO ) THEN 
               IF( ( ALPHAR( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR.
     $             ( SAFMIN/ALPHAR( I ) ).GT.( ANRM/ANRMTO ) ) THEN
                  WORK( 1 ) = ABS( A( I, I )/ALPHAR( I ) )
                  BETA( I ) = BETA( I )*WORK( 1 )
                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
               ELSE IF( ( ALPHAI( I )/SAFMAX ).GT.( ANRMTO/ANRM ) .OR.
     $             ( SAFMIN/ALPHAI( I ) ).GT.( ANRM/ANRMTO ) ) THEN
                  WORK( 1 ) = ABS( A( I, I+1 )/ALPHAI( I ) )
                  BETA( I ) = BETA( I )*WORK( 1 )
                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
               END IF
            END IF
   50    CONTINUE
      END IF 
*
      IF( ILBSCL )THEN 
         DO 60 I = 1, N
            IF( ALPHAI( I ).NE.ZERO ) THEN
                IF( ( BETA( I )/SAFMAX ).GT.( BNRMTO/BNRM ) .OR.
     $              ( SAFMIN/BETA( I ) ).GT.( BNRM/BNRMTO ) ) THEN
                   WORK( 1 ) = ABS(B( I, I )/BETA( I ))
                   BETA( I ) = BETA( I )*WORK( 1 )
                   ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
                   ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
                END IF 
             END IF
   60    CONTINUE 
      END IF 
*
*     Undo scaling
*
      IF( ILASCL ) THEN
         CALL SLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
         CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
      END IF
*
      IF( ILBSCL ) THEN
         CALL SLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
         CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
      END IF
*
      IF( WANTST ) THEN
*
*        Check if reordering is correct
*
         LASTSL = .TRUE.
         LST2SL = .TRUE.
         SDIM = 0
         IP = 0
         DO 30 I = 1, N
            CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
            IF( ALPHAI( I ).EQ.ZERO ) THEN
               IF( CURSL )
     $            SDIM = SDIM + 1
               IP = 0
               IF( CURSL .AND. .NOT.LASTSL )
     $            INFO = N + 2
            ELSE
               IF( IP.EQ.1 ) THEN
*
*                 Last eigenvalue of conjugate pair
*
                  CURSL = CURSL .OR. LASTSL
                  LASTSL = CURSL
                  IF( CURSL )
     $               SDIM = SDIM + 2
                  IP = -1
                  IF( CURSL .AND. .NOT.LST2SL )
     $               INFO = N + 2
               ELSE
*
*                 First eigenvalue of conjugate pair
*
                  IP = 1
               END IF
            END IF
            LST2SL = LASTSL
            LASTSL = CURSL
   30    CONTINUE
*
      END IF
*
   40 CONTINUE
*
      WORK( 1 ) = MAXWRK
*
      RETURN
*
*     End of SGGES
*
      END