summaryrefslogtreecommitdiff
path: root/SRC/sgesvdx.f
blob: 24422fdae34f23b662a6b0754a259a7c081db42d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
*> \brief <b> SGESVDX computes the singular value decomposition (SVD) for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGESVDX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesvdx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesvdx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesvdx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*     SUBROUTINE SGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
*    $                    IL, IU, NS, S, U, LDU, VT, LDVT, WORK,
*    $                    LWORK, IWORK, INFO )
*
*
*     .. Scalar Arguments ..
*      CHARACTER          JOBU, JOBVT, RANGE
*      INTEGER            IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS
*      REAL               VL, VU
*     ..
*     .. Array Arguments ..
*     INTEGER            IWORK( * )
*     REAL               A( LDA, * ), S( * ), U( LDU, * ),
*    $                   VT( LDVT, * ), WORK( * )
*     ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>  SGESVDX computes the singular value decomposition (SVD) of a real
*>  M-by-N matrix A, optionally computing the left and/or right singular
*>  vectors. The SVD is written
*>
*>      A = U * SIGMA * transpose(V)
*>
*>  where SIGMA is an M-by-N matrix which is zero except for its
*>  min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
*>  V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA
*>  are the singular values of A; they are real and non-negative, and
*>  are returned in descending order.  The first min(m,n) columns of
*>  U and V are the left and right singular vectors of A.
*>
*>  SGESVDX uses an eigenvalue problem for obtaining the SVD, which
*>  allows for the computation of a subset of singular values and
*>  vectors. See SBDSVDX for details.
*>
*>  Note that the routine returns V**T, not V.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>          Specifies options for computing all or part of the matrix U:
*>          = 'V':  the first min(m,n) columns of U (the left singular
*>                  vectors) or as specified by RANGE are returned in
*>                  the array U;
*>          = 'N':  no columns of U (no left singular vectors) are
*>                  computed.
*> \endverbatim
*>
*> \param[in] JOBVT
*> \verbatim
*>          JOBVT is CHARACTER*1
*>           Specifies options for computing all or part of the matrix
*>           V**T:
*>           = 'V':  the first min(m,n) rows of V**T (the right singular
*>                   vectors) or as specified by RANGE are returned in
*>                   the array VT;
*>           = 'N':  no rows of V**T (no right singular vectors) are
*>                   computed.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': all singular values will be found.
*>          = 'V': all singular values in the half-open interval (VL,VU]
*>                 will be found.
*>          = 'I': the IL-th through IU-th singular values will be found.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the input matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the input matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the contents of A are destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is REAL
*>          If RANGE='V', the lower bound of the interval to
*>          be searched for singular values. VU > VL.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>          VU is REAL
*>          If RANGE='V', the upper bound of the interval to
*>          be searched for singular values. VU > VL.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*>          If RANGE='I', the index of the
*>          smallest singular value to be returned.
*>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>          If RANGE='I', the index of the
*>          largest singular value to be returned.
*>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[out] NS
*> \verbatim
*>          NS is INTEGER
*>          The total number of singular values found,
*>          0 <= NS <= min(M,N).
*>          If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (min(M,N))
*>          The singular values of A, sorted so that S(i) >= S(i+1).
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is REAL array, dimension (LDU,UCOL)
*>          If JOBU = 'V', U contains columns of U (the left singular
*>          vectors, stored columnwise) as specified by RANGE; if
*>          JOBU = 'N', U is not referenced.
*>          Note: The user must ensure that UCOL >= NS; if RANGE = 'V',
*>          the exact value of NS is not known in advance and an upper
*>          bound must be used.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U.  LDU >= 1; if
*>          JOBU = 'V', LDU >= M.
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*>          VT is REAL array, dimension (LDVT,N)
*>          If JOBVT = 'V', VT contains the rows of V**T (the right singular
*>          vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N',
*>          VT is not referenced.
*>          Note: The user must ensure that LDVT >= NS; if RANGE = 'V',
*>          the exact value of NS is not known in advance and an upper
*>          bound must be used.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>          The leading dimension of the array VT.  LDVT >= 1; if
*>          JOBVT = 'V', LDVT >= NS (see above).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see
*>          comments inside the code):
*>             - PATH 1  (M much larger than N)
*>             - PATH 1t (N much larger than M)
*>          LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths.
*>          For good performance, LWORK should generally be larger.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (12*MIN(M,N))
*>          If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0,
*>          then IWORK contains the indices of the eigenvectors that failed
*>          to converge in SBDSVDX/SSTEVX.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>     INFO is INTEGER
*>           = 0:  successful exit
*>           < 0:  if INFO = -i, the i-th argument had an illegal value
*>           > 0:  if INFO = i, then i eigenvectors failed to converge
*>                 in SBDSVDX/SSTEVX.
*>                 if INFO = N*2 + 1, an internal error occurred in
*>                 SBDSVDX
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup realGEsing
*
*  =====================================================================
      SUBROUTINE SGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU,
     $                    IL, IU, NS, S, U, LDU, VT, LDVT, WORK,
     $                    LWORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2016
*
*     .. Scalar Arguments ..
      CHARACTER          JOBU, JOBVT, RANGE
      INTEGER            IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS
      REAL               VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), S( * ), U( LDU, * ),
     $                   VT( LDVT, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          JOBZ, RNGTGK
      LOGICAL            ALLS, INDS, LQUERY, VALS, WANTU, WANTVT
      INTEGER            I, ID, IE, IERR, ILQF, ILTGK, IQRF, ISCL,
     $                   ITAU, ITAUP, ITAUQ, ITEMP, ITGKZ, IUTGK,
     $                   J, MAXWRK, MINMN, MINWRK, MNTHR
      REAL               ABSTOL, ANRM, BIGNUM, EPS, SMLNUM
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SBDSVDX, SGEBRD, SGELQF, SGEQRF, SLACPY,
     $                   SLASCL, SLASET, SORMBR, SORMLQ, SORMQR,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      NS = 0
      INFO = 0
      ABSTOL = 2*SLAMCH('S')
      LQUERY = ( LWORK.EQ.-1 )
      MINMN = MIN( M, N )

      WANTU = LSAME( JOBU, 'V' )
      WANTVT = LSAME( JOBVT, 'V' )
      IF( WANTU .OR. WANTVT ) THEN
         JOBZ = 'V'
      ELSE
         JOBZ = 'N'
      END IF
      ALLS = LSAME( RANGE, 'A' )
      VALS = LSAME( RANGE, 'V' )
      INDS = LSAME( RANGE, 'I' )
*
      INFO = 0
      IF( .NOT.LSAME( JOBU, 'V' ) .AND.
     $    .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( JOBVT, 'V' ) .AND.
     $         .NOT.LSAME( JOBVT, 'N' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( ALLS .OR. VALS .OR. INDS ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( M.GT.LDA ) THEN
         INFO = -7
      ELSE IF( MINMN.GT.0 ) THEN
         IF( VALS ) THEN
            IF( VL.LT.ZERO ) THEN
               INFO = -8
            ELSE IF( VU.LE.VL ) THEN
               INFO = -9
            END IF
         ELSE IF( INDS ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, MINMN ) ) THEN
               INFO = -10
            ELSE IF( IU.LT.MIN( MINMN, IL ) .OR. IU.GT.MINMN ) THEN
               INFO = -11
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( WANTU .AND. LDU.LT.M ) THEN
               INFO = -15
            ELSE IF( WANTVT ) THEN
               IF( INDS ) THEN
                   IF( LDVT.LT.IU-IL+1 ) THEN
                       INFO = -17
                   END IF
               ELSE IF( LDVT.LT.MINMN ) THEN
                   INFO = -17
               END IF
            END IF
         END IF
      END IF
*
*     Compute workspace
*     (Note: Comments in the code beginning "Workspace:" describe the
*     minimal amount of workspace needed at that point in the code,
*     as well as the preferred amount for good performance.
*     NB refers to the optimal block size for the immediately
*     following subroutine, as returned by ILAENV.)
*
      IF( INFO.EQ.0 ) THEN
         MINWRK = 1
         MAXWRK = 1
         IF( MINMN.GT.0 ) THEN
            IF( M.GE.N ) THEN
               MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
               IF( M.GE.MNTHR ) THEN
*
*                 Path 1 (M much larger than N)
*
                  MAXWRK = N +
     $                     N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  MAXWRK = MAX( MAXWRK, N*(N+5) + 2*N*
     $                     ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  IF (WANTU) THEN
                      MAXWRK = MAX(MAXWRK,N*(N*3+6)+N*
     $                     ILAENV( 1, 'SORMQR', ' ', N, N, -1, -1 ) )
                  END IF
                  IF (WANTVT) THEN
                      MAXWRK = MAX(MAXWRK,N*(N*3+6)+N*
     $                     ILAENV( 1, 'SORMLQ', ' ', N, N, -1, -1 ) )
                  END IF
                  MINWRK = N*(N*3+20)
               ELSE
*
*                 Path 2 (M at least N, but not much larger)
*
                  MAXWRK = 4*N + ( M+N )*
     $                     ILAENV( 1, 'SGEBRD', ' ', M, N, -1, -1 )
                  IF (WANTU) THEN
                      MAXWRK = MAX(MAXWRK,N*(N*2+5)+N*
     $                     ILAENV( 1, 'SORMQR', ' ', N, N, -1, -1 ) )
                  END IF
                  IF (WANTVT) THEN
                      MAXWRK = MAX(MAXWRK,N*(N*2+5)+N*
     $                     ILAENV( 1, 'SORMLQ', ' ', N, N, -1, -1 ) )
                  END IF
                  MINWRK = MAX(N*(N*2+19),4*N+M)
               END IF
            ELSE
               MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
               IF( N.GE.MNTHR ) THEN
*
*                 Path 1t (N much larger than M)
*
                  MAXWRK = M +
     $                     M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  MAXWRK = MAX( MAXWRK, M*(M+5) + 2*M*
     $                     ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  IF (WANTU) THEN
                      MAXWRK = MAX(MAXWRK,M*(M*3+6)+M*
     $                     ILAENV( 1, 'SORMQR', ' ', M, M, -1, -1 ) )
                  END IF
                  IF (WANTVT) THEN
                      MAXWRK = MAX(MAXWRK,M*(M*3+6)+M*
     $                     ILAENV( 1, 'SORMLQ', ' ', M, M, -1, -1 ) )
                  END IF
                  MINWRK = M*(M*3+20)
               ELSE
*
*                 Path 2t (N at least M, but not much larger)
*
                  MAXWRK = 4*M + ( M+N )*
     $                     ILAENV( 1, 'SGEBRD', ' ', M, N, -1, -1 )
                  IF (WANTU) THEN
                      MAXWRK = MAX(MAXWRK,M*(M*2+5)+M*
     $                     ILAENV( 1, 'SORMQR', ' ', M, M, -1, -1 ) )
                  END IF
                  IF (WANTVT) THEN
                      MAXWRK = MAX(MAXWRK,M*(M*2+5)+M*
     $                     ILAENV( 1, 'SORMLQ', ' ', M, M, -1, -1 ) )
                  END IF
                  MINWRK = MAX(M*(M*2+19),4*M+N)
               END IF
            END IF
         END IF
         MAXWRK = MAX( MAXWRK, MINWRK )
         WORK( 1 ) = REAL( MAXWRK )
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
             INFO = -19
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGESVDX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         RETURN
      END IF
*
*     Set singular values indices accord to RANGE.
*
      IF( ALLS ) THEN
         RNGTGK = 'I'
         ILTGK = 1
         IUTGK = MIN( M, N )
      ELSE IF( INDS ) THEN
         RNGTGK = 'I'
         ILTGK = IL
         IUTGK = IU
      ELSE
         RNGTGK = 'V'
         ILTGK = 0
         IUTGK = 0
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
      ISCL = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ISCL = 1
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ISCL = 1
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
      END IF
*
      IF( M.GE.N ) THEN
*
*        A has at least as many rows as columns. If A has sufficiently
*        more rows than columns, first reduce A using the QR
*        decomposition.
*
         IF( M.GE.MNTHR ) THEN
*
*           Path 1 (M much larger than N):
*           A = Q * R = Q * ( QB * B * PB**T )
*                     = Q * ( QB * ( UB * S * VB**T ) * PB**T )
*           U = Q * QB * UB; V**T = VB**T * PB**T
*
*           Compute A=Q*R
*           (Workspace: need 2*N, prefer N+N*NB)
*
            ITAU = 1
            ITEMP = ITAU + N
            CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )
*
*           Copy R into WORK and bidiagonalize it:
*           (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB)
*
            IQRF = ITEMP
            ID = IQRF + N*N
            IE = ID + N
            ITAUQ = IE + N
            ITAUP = ITAUQ + N
            ITEMP = ITAUP + N
            CALL SLACPY( 'U', N, N, A, LDA, WORK( IQRF ), N )
            CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IQRF+1 ), N )
            CALL SGEBRD( N, N, WORK( IQRF ), N, WORK( ID ), WORK( IE ),
     $                   WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )
*
*           Solve eigenvalue problem TGK*Z=Z*S.
*           (Workspace: need 14*N + 2*N*(N+1))
*
            ITGKZ = ITEMP
            ITEMP = ITGKZ + N*(N*2+1)
            CALL SBDSVDX( 'U', JOBZ, RNGTGK, N, WORK( ID ), WORK( IE ),
     $                    VL, VU, ILTGK, IUTGK, NS, S, WORK( ITGKZ ),
     $                    N*2, WORK( ITEMP ), IWORK, INFO)
*
*           If needed, compute left singular vectors.
*
            IF( WANTU ) THEN
               J = ITGKZ
               DO I = 1, NS
                  CALL SCOPY( N, WORK( J ), 1, U( 1,I ), 1 )
                  J = J + N*2
               END DO
               CALL SLASET( 'A', M-N, NS, ZERO, ZERO, U( N+1,1 ), LDU )
*
*              Call SORMBR to compute QB*UB.
*              (Workspace in WORK( ITEMP ): need N, prefer N*NB)
*
               CALL SORMBR( 'Q', 'L', 'N', N, NS, N, WORK( IQRF ), N,
     $                      WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
*
*              Call SORMQR to compute Q*(QB*UB).
*              (Workspace in WORK( ITEMP ): need N, prefer N*NB)
*
               CALL SORMQR( 'L', 'N', M, NS, N, A, LDA,
     $                      WORK( ITAU ), U, LDU, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
*
*           If needed, compute right singular vectors.
*
            IF( WANTVT) THEN
               J = ITGKZ + N
               DO I = 1, NS
                  CALL SCOPY( N, WORK( J ), 1, VT( I,1 ), LDVT )
                  J = J + N*2
               END DO
*
*              Call SORMBR to compute VB**T * PB**T
*              (Workspace in WORK( ITEMP ): need N, prefer N*NB)
*
               CALL SORMBR( 'P', 'R', 'T', NS, N, N, WORK( IQRF ), N,
     $                      WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
         ELSE
*
*           Path 2 (M at least N, but not much larger)
*           Reduce A to bidiagonal form without QR decomposition
*           A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T
*           U = QB * UB; V**T = VB**T * PB**T
*
*           Bidiagonalize A
*           (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB)
*
            ID = 1
            IE = ID + N
            ITAUQ = IE + N
            ITAUP = ITAUQ + N
            ITEMP = ITAUP + N
            CALL SGEBRD( M, N, A, LDA, WORK( ID ), WORK( IE ),
     $                   WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )
*
*           Solve eigenvalue problem TGK*Z=Z*S.
*           (Workspace: need 14*N + 2*N*(N+1))
*
            ITGKZ = ITEMP
            ITEMP = ITGKZ + N*(N*2+1)
            CALL SBDSVDX( 'U', JOBZ, RNGTGK, N, WORK( ID ), WORK( IE ),
     $                    VL, VU, ILTGK, IUTGK, NS, S, WORK( ITGKZ ),
     $                    N*2, WORK( ITEMP ), IWORK, INFO)
*
*           If needed, compute left singular vectors.
*
            IF( WANTU ) THEN
               J = ITGKZ
               DO I = 1, NS
                  CALL SCOPY( N, WORK( J ), 1, U( 1,I ), 1 )
                  J = J + N*2
               END DO
               CALL SLASET( 'A', M-N, NS, ZERO, ZERO, U( N+1,1 ), LDU )
*
*              Call SORMBR to compute QB*UB.
*              (Workspace in WORK( ITEMP ): need N, prefer N*NB)
*
               CALL SORMBR( 'Q', 'L', 'N', M, NS, N, A, LDA,
     $                      WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, IERR )
            END IF
*
*           If needed, compute right singular vectors.
*
            IF( WANTVT) THEN
               J = ITGKZ + N
               DO I = 1, NS
                  CALL SCOPY( N, WORK( J ), 1, VT( I,1 ), LDVT )
                  J = J + N*2
               END DO
*
*              Call SORMBR to compute VB**T * PB**T
*              (Workspace in WORK( ITEMP ): need N, prefer N*NB)
*
               CALL SORMBR( 'P', 'R', 'T', NS, N, N, A, LDA,
     $                      WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, IERR )
            END IF
         END IF
      ELSE
*
*        A has more columns than rows. If A has sufficiently more
*        columns than rows, first reduce A using the LQ decomposition.
*
         IF( N.GE.MNTHR ) THEN
*
*           Path 1t (N much larger than M):
*           A = L * Q = ( QB * B * PB**T ) * Q
*                     = ( QB * ( UB * S * VB**T ) * PB**T ) * Q
*           U = QB * UB ; V**T = VB**T * PB**T * Q
*
*           Compute A=L*Q
*           (Workspace: need 2*M, prefer M+M*NB)
*
            ITAU = 1
            ITEMP = ITAU + M
            CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )

*           Copy L into WORK and bidiagonalize it:
*           (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB)
*
            ILQF = ITEMP
            ID = ILQF + M*M
            IE = ID + M
            ITAUQ = IE + M
            ITAUP = ITAUQ + M
            ITEMP = ITAUP + M
            CALL SLACPY( 'L', M, M, A, LDA, WORK( ILQF ), M )
            CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( ILQF+M ), M )
            CALL SGEBRD( M, M, WORK( ILQF ), M, WORK( ID ), WORK( IE ),
     $                   WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )
*
*           Solve eigenvalue problem TGK*Z=Z*S.
*           (Workspace: need 2*M*M+14*M)
*
            ITGKZ = ITEMP
            ITEMP = ITGKZ + M*(M*2+1)
            CALL SBDSVDX( 'U', JOBZ, RNGTGK, M, WORK( ID ), WORK( IE ),
     $                    VL, VU, ILTGK, IUTGK, NS, S, WORK( ITGKZ ),
     $                    M*2, WORK( ITEMP ), IWORK, INFO)
*
*           If needed, compute left singular vectors.
*
            IF( WANTU ) THEN
               J = ITGKZ
               DO I = 1, NS
                  CALL SCOPY( M, WORK( J ), 1, U( 1,I ), 1 )
                  J = J + M*2
               END DO
*
*              Call SORMBR to compute QB*UB.
*              (Workspace in WORK( ITEMP ): need M, prefer M*NB)
*
               CALL SORMBR( 'Q', 'L', 'N', M, NS, M, WORK( ILQF ), M,
     $                      WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
*
*           If needed, compute right singular vectors.
*
            IF( WANTVT) THEN
               J = ITGKZ + M
               DO I = 1, NS
                  CALL SCOPY( M, WORK( J ), 1, VT( I,1 ), LDVT )
                  J = J + M*2
               END DO
               CALL SLASET( 'A', NS, N-M, ZERO, ZERO, VT( 1,M+1 ), LDVT)
*
*              Call SORMBR to compute (VB**T)*(PB**T)
*              (Workspace in WORK( ITEMP ): need M, prefer M*NB)
*
               CALL SORMBR( 'P', 'R', 'T', NS, M, M, WORK( ILQF ), M,
     $                      WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
*
*              Call SORMLQ to compute ((VB**T)*(PB**T))*Q.
*              (Workspace in WORK( ITEMP ): need M, prefer M*NB)
*
               CALL SORMLQ( 'R', 'N', NS, N, M, A, LDA,
     $                      WORK( ITAU ), VT, LDVT, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
         ELSE
*
*           Path 2t (N greater than M, but not much larger)
*           Reduce to bidiagonal form without LQ decomposition
*           A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T
*           U = QB * UB; V**T = VB**T * PB**T
*
*           Bidiagonalize A
*           (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB)
*
            ID = 1
            IE = ID + M
            ITAUQ = IE + M
            ITAUP = ITAUQ + M
            ITEMP = ITAUP + M
            CALL SGEBRD( M, N, A, LDA, WORK( ID ), WORK( IE ),
     $                   WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ),
     $                   LWORK-ITEMP+1, INFO )
*
*           Solve eigenvalue problem TGK*Z=Z*S.
*           (Workspace: need 2*M*M+14*M)
*
            ITGKZ = ITEMP
            ITEMP = ITGKZ + M*(M*2+1)
            CALL SBDSVDX( 'L', JOBZ, RNGTGK, M, WORK( ID ), WORK( IE ),
     $                    VL, VU, ILTGK, IUTGK, NS, S, WORK( ITGKZ ),
     $                    M*2, WORK( ITEMP ), IWORK, INFO)
*
*           If needed, compute left singular vectors.
*
            IF( WANTU ) THEN
               J = ITGKZ
               DO I = 1, NS
                  CALL SCOPY( M, WORK( J ), 1, U( 1,I ), 1 )
                  J = J + M*2
               END DO
*
*              Call SORMBR to compute QB*UB.
*              (Workspace in WORK( ITEMP ): need M, prefer M*NB)
*
               CALL SORMBR( 'Q', 'L', 'N', M, NS, N, A, LDA,
     $                      WORK( ITAUQ ), U, LDU, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
*
*           If needed, compute right singular vectors.
*
            IF( WANTVT) THEN
               J = ITGKZ + M
               DO I = 1, NS
                  CALL SCOPY( M, WORK( J ), 1, VT( I,1 ), LDVT )
                  J = J + M*2
               END DO
               CALL SLASET( 'A', NS, N-M, ZERO, ZERO, VT( 1,M+1 ), LDVT)
*
*              Call SORMBR to compute VB**T * PB**T
*              (Workspace in WORK( ITEMP ): need M, prefer M*NB)
*
               CALL SORMBR( 'P', 'R', 'T', NS, N, M, A, LDA,
     $                      WORK( ITAUP ), VT, LDVT, WORK( ITEMP ),
     $                      LWORK-ITEMP+1, INFO )
            END IF
         END IF
      END IF
*
*     Undo scaling if necessary
*
      IF( ISCL.EQ.1 ) THEN
         IF( ANRM.GT.BIGNUM )
     $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1,
     $                   S, MINMN, INFO )
         IF( ANRM.LT.SMLNUM )
     $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1,
     $                   S, MINMN, INFO )
      END IF
*
*     Return optimal workspace in WORK(1)
*
      WORK( 1 ) = REAL( MAXWRK )
*
      RETURN
*
*     End of SGESVDX
*
      END