1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
*> \brief \b SGESC2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download SGESC2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesc2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesc2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesc2.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE SGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
* .. Scalar Arguments ..
* INTEGER LDA, N
* REAL SCALE
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), JPIV( * )
* REAL A( LDA, * ), RHS( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SGESC2 solves a system of linear equations
*>
*> A * X = scale* RHS
*>
*> with a general N-by-N matrix A using the LU factorization with
*> complete pivoting computed by SGETC2.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the LU part of the factorization of the n-by-n
*> matrix A computed by SGETC2: A = P * L * U * Q
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] RHS
*> \verbatim
*> RHS is REAL array, dimension (N).
*> On entry, the right hand side vector b.
*> On exit, the solution vector X.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N).
*> The pivot indices; for 1 <= i <= N, row i of the
*> matrix has been interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in] JPIV
*> \verbatim
*> JPIV is INTEGER array, dimension (N).
*> The pivot indices; for 1 <= j <= N, column j of the
*> matrix has been interchanged with column JPIV(j).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is REAL
*> On exit, SCALE contains the scale factor. SCALE is chosen
*> 0 <= SCALE <= 1 to prevent owerflow in the solution.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realGEauxiliary
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*> Umea University, S-901 87 Umea, Sweden.
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, N
REAL SCALE
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
REAL A( LDA, * ), RHS( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL BIGNUM, EPS, SMLNUM, TEMP
* ..
* .. External Subroutines ..
EXTERNAL SLABAD, SLASWP, SSCAL
* ..
* .. External Functions ..
INTEGER ISAMAX
REAL SLAMCH
EXTERNAL ISAMAX, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Set constant to control owerflow
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Apply permutations IPIV to RHS
*
CALL SLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
*
* Solve for L part
*
DO 20 I = 1, N - 1
DO 10 J = I + 1, N
RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
10 CONTINUE
20 CONTINUE
*
* Solve for U part
*
SCALE = ONE
*
* Check for scaling
*
I = ISAMAX( N, RHS, 1 )
IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
TEMP = ( ONE / TWO ) / ABS( RHS( I ) )
CALL SSCAL( N, TEMP, RHS( 1 ), 1 )
SCALE = SCALE*TEMP
END IF
*
DO 40 I = N, 1, -1
TEMP = ONE / A( I, I )
RHS( I ) = RHS( I )*TEMP
DO 30 J = I + 1, N
RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
30 CONTINUE
40 CONTINUE
*
* Apply permutations JPIV to the solution (RHS)
*
CALL SLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
RETURN
*
* End of SGESC2
*
END
|