summaryrefslogtreecommitdiff
path: root/SRC/sgeqrt.f
blob: d8b9fade527257fbb1568fb3d06d28c553294733 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
*> \brief \b SGEQRT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGEQRT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqrt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqrt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqrt.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER INFO, LDA, LDT, M, N, NB
*       ..
*       .. Array Arguments ..
*       REAL A( LDA, * ), T( LDT, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEQRT computes a blocked QR factorization of a real M-by-N matrix A
*> using the compact WY representation of Q.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the elements on and above the diagonal of the array
*>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
*>          upper triangular if M >= N); the elements below the diagonal
*>          are the columns of V.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is REAL array, dimension (LDT,MIN(M,N))
*>          The upper triangular block reflectors stored in compact form
*>          as a sequence of upper triangular blocks.  See below
*>          for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= NB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (NB*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realGEcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The matrix V stores the elementary reflectors H(i) in the i-th column
*>  below the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*>               V = (  1       )
*>                   ( v1  1    )
*>                   ( v1 v2  1 )
*>                   ( v1 v2 v3 )
*>                   ( v1 v2 v3 )
*>
*>  where the vi's represent the vectors which define H(i), which are returned
*>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
*>
*>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
*>  block is of order NB except for the last block, which is of order
*>  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
*>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
*>  for the last block) T's are stored in the NB-by-N matrix T as
*>
*>               T = (T1 T2 ... TB).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER INFO, LDA, LDT, M, N, NB
*     ..
*     .. Array Arguments ..
      REAL A( LDA, * ), T( LDT, * ), WORK( * )
*     ..
*
* =====================================================================
*
*     ..
*     .. Local Scalars ..
      INTEGER    I, IB, IINFO, K
      LOGICAL    USE_RECURSIVE_QR
      PARAMETER( USE_RECURSIVE_QR=.TRUE. )
*     ..
*     .. External Subroutines ..
      EXTERNAL   SGEQRT2, SGEQRT3, SLARFB, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDT.LT.NB ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEQRT', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      K = MIN( M, N )
      IF( K.EQ.0 ) RETURN
*
*     Blocked loop of length K
*
      DO I = 1, K,  NB
         IB = MIN( K-I+1, NB )
*
*     Compute the QR factorization of the current block A(I:M,I:I+IB-1)
*
         IF( USE_RECURSIVE_QR ) THEN
            CALL SGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
         ELSE
            CALL SGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
         END IF
         IF( I+IB.LE.N ) THEN
*
*     Update by applying H**T to A(I:M,I+IB:N) from the left
*
            CALL SLARFB( 'L', 'T', 'F', 'C', M-I+1, N-I-IB+1, IB,
     $                   A( I, I ), LDA, T( 1, I ), LDT,
     $                   A( I, I+IB ), LDA, WORK , N-I-IB+1 )
         END IF
      END DO
      RETURN
*
*     End of SGEQRT
*
      END