summaryrefslogtreecommitdiff
path: root/SRC/sgeqr.f
blob: c984404ca2b557cf844bd499be05a3dab02be590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
* 
*  Definition:
*  ===========
*
*       SUBROUTINE SGEQR( M, N, A, LDA, WORK1, LWORK1, WORK2, LWORK2,
*                        INFO)
* 
*       .. Scalar Arguments ..
*       INTEGER           INFO, LDA, M, N, LWORK1, LWORK2
*       ..
*       .. Array Arguments ..
*       REAL              A( LDA, * ), WORK1( * ), WORK2( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> 
*> SGEQR computes a QR factorization of an M-by-N matrix A, 
*> using SLATSQR when A is tall and skinny 
*> (M sufficiently greater than N), and otherwise SGEQRT:          
*> A = Q * R .
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the elements on and above the diagonal of the array
*>          contain the min(M,N)-by-N upper trapezoidal matrix R 
*>          (R is upper triangular if M >= N);
*>          the elements below the diagonal represent Q (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK1
*> \verbatim
*>          WORK1 is REAL array, dimension (MAX(1,LWORK1))
*>          WORK1 contains part of the data structure used to store Q.
*>          WORK1(1): algorithm type = 1, to indicate output from 
*>                    DLATSQR or DGEQRT
*>          WORK1(2): optimum size of WORK1
*>          WORK1(3): minimum size of WORK1
*>          WORK1(4): row block size
*>          WORK1(5): column block size
*>          WORK1(6:LWORK1): data structure needed for Q, computed by 
*>                           SLATSQR or SGEQRT
*> \endverbatim
*>
*> \param[in] LWORK1
*> \verbatim
*>          LWORK1 is INTEGER
*>          The dimension of the array WORK1.
*>          If LWORK1 = -1, then a query is assumed. In this case the 
*>          routine calculates the optimal size of WORK1 and
*>          returns this value in WORK1(2), and calculates the minimum 
*>          size of WORK1 and returns this value in WORK1(3). 
*>          No error message related to LWORK1 is issued by XERBLA when 
*>          LWORK1 = -1.
*> \endverbatim
*>
*> \param[out] WORK2
*> \verbatim
*>         (workspace) REAL array, dimension (MAX(1,LWORK2))      
*> \endverbatim
*>
*> \param[in] LWORK2
*> \verbatim
*>          LWORK2 is INTEGER
*>          The dimension of the array WORK2.
*>          If LWORK2 = -1, then a query is assumed. In this case the 
*>          routine calculates the optimal size of WORK2 and 
*>          returns this value in WORK2(1), and calculates the minimum
*>          size of WORK2 and returns this value in WORK2(2).
*>          No error message related to LWORK2 is issued by XERBLA when
*>          LWORK2 = -1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>  Depending on the matrix dimensions M and N, and row and column
*>  block sizes MB and NB returned by ILAENV, GEQR will use either
*>  LATSQR (if the matrix is tall-and-skinny) or GEQRT to compute
*>  the QR decomposition. 
*>  The output of LATSQR or GEQRT representing Q is stored in A and in
*>  array WORK1(6:LWORK1) for later use. 
*>  WORK1(2:5) contains the matrix dimensions M,N and block sizes MB,NB 
*>  which are needed to interpret A and WORK1(6:LWORK1) for later use. 
*>  WORK1(1)=1 indicates that the code needed to take WORK1(2:5) and 
*>  decide whether LATSQR or GEQRT was used is the same as used below in 
*>  GEQR. For a detailed description of A and WORK1(6:LWORK1), see 
*>  Further Details in LATSQR or GEQRT.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SGEQR( M, N, A, LDA, WORK1, LWORK1, WORK2, LWORK2, 
     $   INFO)
*
*  -- LAPACK computational routine (version 3.5.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
*     November 2013
*
*     .. Scalar Arguments ..
      INTEGER           INFO, LDA, M, N, LWORK1, LWORK2
*     ..
*     .. Array Arguments ..
      REAL              A( LDA, * ), WORK1( * ), WORK2( * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL    LQUERY, LMINWS
      INTEGER    MB, NB, I, II, KK, MINLW1, NBLCKS
*     ..
*     .. EXTERNAL FUNCTIONS ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. EXTERNAL SUBROUTINES ..
      EXTERNAL           SLATSQR, SGEQRT, XERBLA
*     .. INTRINSIC FUNCTIONS ..
      INTRINSIC          MAX, MIN, MOD
*     ..
*     .. EXTERNAL FUNCTIONS ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. EXECUTABLE STATEMENTS ..
*
*     TEST THE INPUT ARGUMENTS
*
      INFO = 0
*
      LQUERY = ( LWORK1.EQ.-1 .OR. LWORK2.EQ.-1 )
*
*     Determine the block size 
*    
      IF ( MIN(M,N).GT.0 ) THEN
        MB = ILAENV( 1, 'SGEQR ', ' ', M, N, 1, -1)
        NB = ILAENV( 1, 'SGEQR ', ' ', M, N, 2, -1)
      ELSE
        MB = M
        NB = 1
      END IF
      IF( MB.GT.M.OR.MB.LE.N) MB = M
      IF( NB.GT.MIN(M,N).OR.NB.LT.1) NB = 1
      MINLW1 = N + 5
      IF ((MB.GT.N).AND.(M.GT.N)) THEN
        IF(MOD(M-N, MB-N).EQ.0) THEN
          NBLCKS = (M-N)/(MB-N)
        ELSE
          NBLCKS = (M-N)/(MB-N) + 1
        END IF
      ELSE
        NBLCKS = 1
      END IF
*
*     Determine if the workspace size satisfies minimum size
*  
      LMINWS = .FALSE.
      IF((LWORK1.LT.MAX(1, NB*N*NBLCKS+5) 
     $    .OR.(LWORK2.LT.NB*N)).AND.(LWORK2.GE.N).AND.(LWORK1.GT.N+5) 
     $    .AND.(.NOT.LQUERY)) THEN
        IF (LWORK1.LT.MAX(1, NB * N * NBLCKS+5)) THEN
            LMINWS = .TRUE.
            NB = 1
        END IF  
        IF (LWORK1.LT.MAX(1, N * NBLCKS+5)) THEN
            LMINWS = .TRUE.
            MB = M 
        END IF
        IF (LWORK2.LT.NB*N) THEN
            LMINWS = .TRUE.
            NB = 1
        END IF
      END IF
*
      IF( M.LT.0 ) THEN
        INFO = -1
      ELSE IF( N.LT.0 ) THEN
        INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        INFO = -4
      ELSE IF( LWORK1.LT.MAX( 1, NB * N * NBLCKS + 5 ) 
     $   .AND.(.NOT.LQUERY).AND.(.NOT.LMINWS)) THEN
        INFO = -6
      ELSE IF( (LWORK2.LT.MAX(1,N*NB)).AND.(.NOT.LQUERY) 
     $   .AND.(.NOT.LMINWS)) THEN
        INFO = -8 
      END IF    

      IF( INFO.EQ.0)  THEN
        WORK1(1) = 1
        WORK1(2) = NB * N * NBLCKS + 5
        WORK1(3) = MINLW1
        WORK1(4) = MB
        WORK1(5) = NB
        WORK2(1) = NB * N
        WORK2(2) = N
      END IF
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'SGEQR', -INFO )
        RETURN
      ELSE IF (LQUERY) THEN
       RETURN
      END IF
*
*     Quick return if possible
*
      IF( MIN(M,N).EQ.0 ) THEN
          RETURN
      END IF
*
*     The QR Decomposition
*
      IF((M.LE.N).OR.(MB.LE.N).OR.(MB.GE.M)) THEN
         CALL SGEQRT( M, N, NB, A, LDA, WORK1(6), NB, WORK2, INFO)
      ELSE 
         CALL SLATSQR( M, N, MB, NB, A, LDA, WORK1(6), NB, WORK2, 
     $                    LWORK2, INFO)
      END IF
      RETURN
*     
*     End of SGEQR
*
      END