summaryrefslogtreecommitdiff
path: root/SRC/sgeevx.f
blob: b3124a79365653157595ea1bcf3e76c5a74b2925 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
      SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
     $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
     $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          BALANC, JOBVL, JOBVR, SENSE
      INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
      REAL               ABNRM
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), RCONDE( * ), RCONDV( * ),
     $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WI( * ), WORK( * ), WR( * )
*     ..
*
*  Purpose
*  =======
*
*  SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
*  eigenvalues and, optionally, the left and/or right eigenvectors.
*
*  Optionally also, it computes a balancing transformation to improve
*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
*  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
*  (RCONDE), and reciprocal condition numbers for the right
*  eigenvectors (RCONDV).
*
*  The right eigenvector v(j) of A satisfies
*                   A * v(j) = lambda(j) * v(j)
*  where lambda(j) is its eigenvalue.
*  The left eigenvector u(j) of A satisfies
*                u(j)**H * A = lambda(j) * u(j)**H
*  where u(j)**H denotes the conjugate transpose of u(j).
*
*  The computed eigenvectors are normalized to have Euclidean norm
*  equal to 1 and largest component real.
*
*  Balancing a matrix means permuting the rows and columns to make it
*  more nearly upper triangular, and applying a diagonal similarity
*  transformation D * A * D**(-1), where D is a diagonal matrix, to
*  make its rows and columns closer in norm and the condition numbers
*  of its eigenvalues and eigenvectors smaller.  The computed
*  reciprocal condition numbers correspond to the balanced matrix.
*  Permuting rows and columns will not change the condition numbers
*  (in exact arithmetic) but diagonal scaling will.  For further
*  explanation of balancing, see section 4.10.2 of the LAPACK
*  Users' Guide.
*
*  Arguments
*  =========
*
*  BALANC  (input) CHARACTER*1
*          Indicates how the input matrix should be diagonally scaled
*          and/or permuted to improve the conditioning of its
*          eigenvalues.
*          = 'N': Do not diagonally scale or permute;
*          = 'P': Perform permutations to make the matrix more nearly
*                 upper triangular. Do not diagonally scale;
*          = 'S': Diagonally scale the matrix, i.e. replace A by
*                 D*A*D**(-1), where D is a diagonal matrix chosen
*                 to make the rows and columns of A more equal in
*                 norm. Do not permute;
*          = 'B': Both diagonally scale and permute A.
*
*          Computed reciprocal condition numbers will be for the matrix
*          after balancing and/or permuting. Permuting does not change
*          condition numbers (in exact arithmetic), but balancing does.
*
*  JOBVL   (input) CHARACTER*1
*          = 'N': left eigenvectors of A are not computed;
*          = 'V': left eigenvectors of A are computed.
*          If SENSE = 'E' or 'B', JOBVL must = 'V'.
*
*  JOBVR   (input) CHARACTER*1
*          = 'N': right eigenvectors of A are not computed;
*          = 'V': right eigenvectors of A are computed.
*          If SENSE = 'E' or 'B', JOBVR must = 'V'.
*
*  SENSE   (input) CHARACTER*1
*          Determines which reciprocal condition numbers are computed.
*          = 'N': None are computed;
*          = 'E': Computed for eigenvalues only;
*          = 'V': Computed for right eigenvectors only;
*          = 'B': Computed for eigenvalues and right eigenvectors.
*
*          If SENSE = 'E' or 'B', both left and right eigenvectors
*          must also be computed (JOBVL = 'V' and JOBVR = 'V').
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the N-by-N matrix A.
*          On exit, A has been overwritten.  If JOBVL = 'V' or
*          JOBVR = 'V', A contains the real Schur form of the balanced
*          version of the input matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  WR      (output) REAL array, dimension (N)
*  WI      (output) REAL array, dimension (N)
*          WR and WI contain the real and imaginary parts,
*          respectively, of the computed eigenvalues.  Complex
*          conjugate pairs of eigenvalues will appear consecutively
*          with the eigenvalue having the positive imaginary part
*          first.
*
*  VL      (output) REAL array, dimension (LDVL,N)
*          If JOBVL = 'V', the left eigenvectors u(j) are stored one
*          after another in the columns of VL, in the same order
*          as their eigenvalues.
*          If JOBVL = 'N', VL is not referenced.
*          If the j-th eigenvalue is real, then u(j) = VL(:,j),
*          the j-th column of VL.
*          If the j-th and (j+1)-st eigenvalues form a complex
*          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
*          u(j+1) = VL(:,j) - i*VL(:,j+1).
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1; if
*          JOBVL = 'V', LDVL >= N.
*
*  VR      (output) REAL array, dimension (LDVR,N)
*          If JOBVR = 'V', the right eigenvectors v(j) are stored one
*          after another in the columns of VR, in the same order
*          as their eigenvalues.
*          If JOBVR = 'N', VR is not referenced.
*          If the j-th eigenvalue is real, then v(j) = VR(:,j),
*          the j-th column of VR.
*          If the j-th and (j+1)-st eigenvalues form a complex
*          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
*          v(j+1) = VR(:,j) - i*VR(:,j+1).
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          JOBVR = 'V', LDVR >= N.
*
*  ILO     (output) INTEGER
*  IHI     (output) INTEGER
*          ILO and IHI are integer values determined when A was
*          balanced.  The balanced A(i,j) = 0 if I > J and 
*          J = 1,...,ILO-1 or I = IHI+1,...,N.
*
*  SCALE   (output) REAL array, dimension (N)
*          Details of the permutations and scaling factors applied
*          when balancing A.  If P(j) is the index of the row and column
*          interchanged with row and column j, and D(j) is the scaling
*          factor applied to row and column j, then
*          SCALE(J) = P(J),    for J = 1,...,ILO-1
*                   = D(J),    for J = ILO,...,IHI
*                   = P(J)     for J = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  ABNRM   (output) REAL
*          The one-norm of the balanced matrix (the maximum
*          of the sum of absolute values of elements of any column).
*
*  RCONDE  (output) REAL array, dimension (N)
*          RCONDE(j) is the reciprocal condition number of the j-th
*          eigenvalue.
*
*  RCONDV  (output) REAL array, dimension (N)
*          RCONDV(j) is the reciprocal condition number of the j-th
*          right eigenvector.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.   If SENSE = 'N' or 'E',
*          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
*          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace) INTEGER array, dimension (2*N-2)
*          If SENSE = 'N' or 'E', not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = i, the QR algorithm failed to compute all the
*                eigenvalues, and no eigenvectors or condition numbers
*                have been computed; elements 1:ILO-1 and i+1:N of WR
*                and WI contain eigenvalues which have converged.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
     $                   WNTSNN, WNTSNV
      CHARACTER          JOB, SIDE
      INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
     $                   MINWRK, NOUT
      REAL               ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
     $                   SN
*     ..
*     .. Local Arrays ..
      LOGICAL            SELECT( 1 )
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD, SLACPY,
     $                   SLARTG, SLASCL, SORGHR, SROT, SSCAL, STREVC,
     $                   STRSNA, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV, ISAMAX
      REAL               SLAMCH, SLANGE, SLAPY2, SNRM2
      EXTERNAL           LSAME, ILAENV, ISAMAX, SLAMCH, SLANGE, SLAPY2,
     $                   SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      WANTVL = LSAME( JOBVL, 'V' )
      WANTVR = LSAME( JOBVR, 'V' )
      WNTSNN = LSAME( SENSE, 'N' )
      WNTSNE = LSAME( SENSE, 'E' )
      WNTSNV = LSAME( SENSE, 'V' )
      WNTSNB = LSAME( SENSE, 'B' )
      IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
     $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
     $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
     $         WANTVR ) ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
         INFO = -11
      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
         INFO = -13
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by SHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            MAXWRK = 1
         ELSE
            MAXWRK = N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
*
            IF( WANTVL ) THEN
               CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
     $                WORK, -1, INFO )
            ELSE IF( WANTVR ) THEN
               CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
     $                WORK, -1, INFO )
            ELSE
               IF( WNTSNN ) THEN
                  CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
     $                LDVR, WORK, -1, INFO )
               ELSE
                  CALL SHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
     $                LDVR, WORK, -1, INFO )
               END IF
            END IF
            HSWORK = WORK( 1 )
*
            IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
               MINWRK = 2*N
               IF( .NOT.WNTSNN )
     $            MINWRK = MAX( MINWRK, N*N+6*N )
               MAXWRK = MAX( MAXWRK, HSWORK )
               IF( .NOT.WNTSNN )
     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
            ELSE
               MINWRK = 3*N
               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
     $            MINWRK = MAX( MINWRK, N*N + 6*N )
               MAXWRK = MAX( MAXWRK, HSWORK )
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'SORGHR',
     $                       ' ', N, 1, N, -1 ) )
               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
               MAXWRK = MAX( MAXWRK, 3*N )
            END IF
            MAXWRK = MAX( MAXWRK, MINWRK )
         END IF
         WORK( 1 ) = MAXWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -21
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEEVX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ICOND = 0
      ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*     Balance the matrix and compute ABNRM
*
      CALL SGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
      ABNRM = SLANGE( '1', N, N, A, LDA, DUM )
      IF( SCALEA ) THEN
         DUM( 1 ) = ABNRM
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
         ABNRM = DUM( 1 )
      END IF
*
*     Reduce to upper Hessenberg form
*     (Workspace: need 2*N, prefer N+N*NB)
*
      ITAU = 1
      IWRK = ITAU + N
      CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVL ) THEN
*
*        Want left eigenvectors
*        Copy Householder vectors to VL
*
         SIDE = 'L'
         CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL )
*
*        Generate orthogonal matrix in VL
*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
*
         CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VL
*        (Workspace: need 1, prefer HSWORK (see comments) )
*
         IWRK = ITAU
         CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
         IF( WANTVR ) THEN
*
*           Want left and right eigenvectors
*           Copy Schur vectors to VR
*
            SIDE = 'B'
            CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
         END IF
*
      ELSE IF( WANTVR ) THEN
*
*        Want right eigenvectors
*        Copy Householder vectors to VR
*
         SIDE = 'R'
         CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR )
*
*        Generate orthogonal matrix in VR
*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
*
         CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VR
*        (Workspace: need 1, prefer HSWORK (see comments) )
*
         IWRK = ITAU
         CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
      ELSE
*
*        Compute eigenvalues only
*        If condition numbers desired, compute Schur form
*
         IF( WNTSNN ) THEN
            JOB = 'E'
         ELSE
            JOB = 'S'
         END IF
*
*        (Workspace: need 1, prefer HSWORK (see comments) )
*
         IWRK = ITAU
         CALL SHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
      END IF
*
*     If INFO > 0 from SHSEQR, then quit
*
      IF( INFO.GT.0 )
     $   GO TO 50
*
      IF( WANTVL .OR. WANTVR ) THEN
*
*        Compute left and/or right eigenvectors
*        (Workspace: need 3*N)
*
         CALL STREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
     $                N, NOUT, WORK( IWRK ), IERR )
      END IF
*
*     Compute condition numbers if desired
*     (Workspace: need N*N+6*N unless SENSE = 'E')
*
      IF( .NOT.WNTSNN ) THEN
         CALL STRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
     $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
     $                ICOND )
      END IF
*
      IF( WANTVL ) THEN
*
*        Undo balancing of left eigenvectors
*
         CALL SGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
     $                IERR )
*
*        Normalize left eigenvectors and make largest component real
*
         DO 20 I = 1, N
            IF( WI( I ).EQ.ZERO ) THEN
               SCL = ONE / SNRM2( N, VL( 1, I ), 1 )
               CALL SSCAL( N, SCL, VL( 1, I ), 1 )
            ELSE IF( WI( I ).GT.ZERO ) THEN
               SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ),
     $               SNRM2( N, VL( 1, I+1 ), 1 ) )
               CALL SSCAL( N, SCL, VL( 1, I ), 1 )
               CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 )
               DO 10 K = 1, N
                  WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
   10          CONTINUE
               K = ISAMAX( N, WORK, 1 )
               CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
               CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
               VL( K, I+1 ) = ZERO
            END IF
   20    CONTINUE
      END IF
*
      IF( WANTVR ) THEN
*
*        Undo balancing of right eigenvectors
*
         CALL SGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
     $                IERR )
*
*        Normalize right eigenvectors and make largest component real
*
         DO 40 I = 1, N
            IF( WI( I ).EQ.ZERO ) THEN
               SCL = ONE / SNRM2( N, VR( 1, I ), 1 )
               CALL SSCAL( N, SCL, VR( 1, I ), 1 )
            ELSE IF( WI( I ).GT.ZERO ) THEN
               SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ),
     $               SNRM2( N, VR( 1, I+1 ), 1 ) )
               CALL SSCAL( N, SCL, VR( 1, I ), 1 )
               CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 )
               DO 30 K = 1, N
                  WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
   30          CONTINUE
               K = ISAMAX( N, WORK, 1 )
               CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
               CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
               VR( K, I+1 ) = ZERO
            END IF
   40    CONTINUE
      END IF
*
*     Undo scaling if necessary
*
   50 CONTINUE
      IF( SCALEA ) THEN
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         IF( INFO.EQ.0 ) THEN
            IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
     $         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
     $                      IERR )
         ELSE
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
     $                   IERR )
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
     $                   IERR )
         END IF
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of SGEEVX
*
      END