summaryrefslogtreecommitdiff
path: root/SRC/dtrti2.f
blob: 383cd482d382017275c00e004656552b1c16eeda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
*> \brief \b DTRTI2 computes the inverse of a triangular matrix (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DTRTI2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrti2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrti2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrti2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DTRTI2 computes the inverse of a real upper or lower triangular
*> matrix.
*>
*> This is the Level 2 BLAS version of the algorithm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, the triangular matrix A.  If UPLO = 'U', the
*>          leading n by n upper triangular part of the array A contains
*>          the upper triangular matrix, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading n by n lower triangular part of the array A contains
*>          the lower triangular matrix, and the strictly upper
*>          triangular part of A is not referenced.  If DIAG = 'U', the
*>          diagonal elements of A are also not referenced and are
*>          assumed to be 1.
*>
*>          On exit, the (triangular) inverse of the original matrix, in
*>          the same storage format.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date August 2012
*
*> \ingroup doubleOTHERcomputational
*
*  =====================================================================
      SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     August 2012
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, UPPER
      INTEGER            J
      DOUBLE PRECISION   AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DTRMV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOUNIT = LSAME( DIAG, 'N' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTRTI2', -INFO )
         RETURN
      END IF
*
      IF( UPPER ) THEN
*
*        Compute inverse of upper triangular matrix.
*
         DO 10 J = 1, N
            IF( NOUNIT ) THEN
               A( J, J ) = ONE / A( J, J )
               AJJ = -A( J, J )
            ELSE
               AJJ = -ONE
            END IF
*
*           Compute elements 1:j-1 of j-th column.
*
            CALL DTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,
     $                  A( 1, J ), 1 )
            CALL DSCAL( J-1, AJJ, A( 1, J ), 1 )
   10    CONTINUE
      ELSE
*
*        Compute inverse of lower triangular matrix.
*
         DO 20 J = N, 1, -1
            IF( NOUNIT ) THEN
               A( J, J ) = ONE / A( J, J )
               AJJ = -A( J, J )
            ELSE
               AJJ = -ONE
            END IF
            IF( J.LT.N ) THEN
*
*              Compute elements j+1:n of j-th column.
*
               CALL DTRMV( 'Lower', 'No transpose', DIAG, N-J,
     $                     A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
               CALL DSCAL( N-J, AJJ, A( J+1, J ), 1 )
            END IF
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of DTRTI2
*
      END