1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
*> \brief \b DTRSEN
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DTRSEN + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER COMPQ, JOB
* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
* DOUBLE PRECISION S, SEP
* ..
* .. Array Arguments ..
* LOGICAL SELECT( * )
* INTEGER IWORK( * )
* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
* $ WR( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DTRSEN reorders the real Schur factorization of a real matrix
*> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
*> the leading diagonal blocks of the upper quasi-triangular matrix T,
*> and the leading columns of Q form an orthonormal basis of the
*> corresponding right invariant subspace.
*>
*> Optionally the routine computes the reciprocal condition numbers of
*> the cluster of eigenvalues and/or the invariant subspace.
*>
*> T must be in Schur canonical form (as returned by DHSEQR), that is,
*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
*> 2-by-2 diagonal block has its diagonal elements equal and its
*> off-diagonal elements of opposite sign.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies whether condition numbers are required for the
*> cluster of eigenvalues (S) or the invariant subspace (SEP):
*> = 'N': none;
*> = 'E': for eigenvalues only (S);
*> = 'V': for invariant subspace only (SEP);
*> = 'B': for both eigenvalues and invariant subspace (S and
*> SEP).
*> \endverbatim
*>
*> \param[in] COMPQ
*> \verbatim
*> COMPQ is CHARACTER*1
*> = 'V': update the matrix Q of Schur vectors;
*> = 'N': do not update Q.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*> SELECT is LOGICAL array, dimension (N)
*> SELECT specifies the eigenvalues in the selected cluster. To
*> select a real eigenvalue w(j), SELECT(j) must be set to
*> .TRUE.. To select a complex conjugate pair of eigenvalues
*> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
*> either SELECT(j) or SELECT(j+1) or both must be set to
*> .TRUE.; a complex conjugate pair of eigenvalues must be
*> either both included in the cluster or both excluded.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in,out] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT,N)
*> On entry, the upper quasi-triangular matrix T, in Schur
*> canonical form.
*> On exit, T is overwritten by the reordered matrix T, again in
*> Schur canonical form, with the selected eigenvalues in the
*> leading diagonal blocks.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
*> On exit, if COMPQ = 'V', Q has been postmultiplied by the
*> orthogonal transformation matrix which reorders T; the
*> leading M columns of Q form an orthonormal basis for the
*> specified invariant subspace.
*> If COMPQ = 'N', Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q.
*> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*> WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*> \param[out] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
*>
*> The real and imaginary parts, respectively, of the reordered
*> eigenvalues of T. The eigenvalues are stored in the same
*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
*> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
*> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
*> sufficiently ill-conditioned, then its value may differ
*> significantly from its value before reordering.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The dimension of the specified invariant subspace.
*> 0 < = M <= N.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION
*> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
*> condition number for the selected cluster of eigenvalues.
*> S cannot underestimate the true reciprocal condition number
*> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
*> If JOB = 'N' or 'V', S is not referenced.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*> SEP is DOUBLE PRECISION
*> If JOB = 'V' or 'B', SEP is the estimated reciprocal
*> condition number of the specified invariant subspace. If
*> M = 0 or N, SEP = norm(T).
*> If JOB = 'N' or 'E', SEP is not referenced.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If JOB = 'N', LWORK >= max(1,N);
*> if JOB = 'E', LWORK >= max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK.
*> If JOB = 'N' or 'E', LIWORK >= 1;
*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
*> no error message related to LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> = 1: reordering of T failed because some eigenvalues are too
*> close to separate (the problem is very ill-conditioned);
*> T may have been partially reordered, and WR and WI
*> contain the eigenvalues in the same order as in T; S and
*> SEP (if requested) are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> DTRSEN first collects the selected eigenvalues by computing an
*> orthogonal transformation Z to move them to the top left corner of T.
*> In other words, the selected eigenvalues are the eigenvalues of T11
*> in:
*>
*> Z**T * T * Z = ( T11 T12 ) n1
*> ( 0 T22 ) n2
*> n1 n2
*>
*> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
*> of Z span the specified invariant subspace of T.
*>
*> If T has been obtained from the real Schur factorization of a matrix
*> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
*> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
*> the corresponding invariant subspace of A.
*>
*> The reciprocal condition number of the average of the eigenvalues of
*> T11 may be returned in S. S lies between 0 (very badly conditioned)
*> and 1 (very well conditioned). It is computed as follows. First we
*> compute R so that
*>
*> P = ( I R ) n1
*> ( 0 0 ) n2
*> n1 n2
*>
*> is the projector on the invariant subspace associated with T11.
*> R is the solution of the Sylvester equation:
*>
*> T11*R - R*T22 = T12.
*>
*> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
*> the two-norm of M. Then S is computed as the lower bound
*>
*> (1 + F-norm(R)**2)**(-1/2)
*>
*> on the reciprocal of 2-norm(P), the true reciprocal condition number.
*> S cannot underestimate 1 / 2-norm(P) by more than a factor of
*> sqrt(N).
*>
*> An approximate error bound for the computed average of the
*> eigenvalues of T11 is
*>
*> EPS * norm(T) / S
*>
*> where EPS is the machine precision.
*>
*> The reciprocal condition number of the right invariant subspace
*> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
*> SEP is defined as the separation of T11 and T22:
*>
*> sep( T11, T22 ) = sigma-min( C )
*>
*> where sigma-min(C) is the smallest singular value of the
*> n1*n2-by-n1*n2 matrix
*>
*> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
*>
*> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
*> product. We estimate sigma-min(C) by the reciprocal of an estimate of
*> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
*> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
*>
*> When SEP is small, small changes in T can cause large changes in
*> the invariant subspace. An approximate bound on the maximum angular
*> error in the computed right invariant subspace is
*>
*> EPS * norm(T) / SEP
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
$ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER COMPQ, JOB
INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
DOUBLE PRECISION S, SEP
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
INTEGER IWORK( * )
DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
$ WR( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
$ WANTSP
INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
$ NN
DOUBLE PRECISION EST, RNORM, SCALE
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE
EXTERNAL LSAME, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters
*
WANTBH = LSAME( JOB, 'B' )
WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
WANTQ = LSAME( COMPQ, 'V' )
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
$ THEN
INFO = -1
ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
INFO = -8
ELSE
*
* Set M to the dimension of the specified invariant subspace,
* and test LWORK and LIWORK.
*
M = 0
PAIR = .FALSE.
DO 10 K = 1, N
IF( PAIR ) THEN
PAIR = .FALSE.
ELSE
IF( K.LT.N ) THEN
IF( T( K+1, K ).EQ.ZERO ) THEN
IF( SELECT( K ) )
$ M = M + 1
ELSE
PAIR = .TRUE.
IF( SELECT( K ) .OR. SELECT( K+1 ) )
$ M = M + 2
END IF
ELSE
IF( SELECT( N ) )
$ M = M + 1
END IF
END IF
10 CONTINUE
*
N1 = M
N2 = N - M
NN = N1*N2
*
IF( WANTSP ) THEN
LWMIN = MAX( 1, 2*NN )
LIWMIN = MAX( 1, NN )
ELSE IF( LSAME( JOB, 'N' ) ) THEN
LWMIN = MAX( 1, N )
LIWMIN = 1
ELSE IF( LSAME( JOB, 'E' ) ) THEN
LWMIN = MAX( 1, NN )
LIWMIN = 1
END IF
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -15
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -17
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRSEN', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible.
*
IF( M.EQ.N .OR. M.EQ.0 ) THEN
IF( WANTS )
$ S = ONE
IF( WANTSP )
$ SEP = DLANGE( '1', N, N, T, LDT, WORK )
GO TO 40
END IF
*
* Collect the selected blocks at the top-left corner of T.
*
KS = 0
PAIR = .FALSE.
DO 20 K = 1, N
IF( PAIR ) THEN
PAIR = .FALSE.
ELSE
SWAP = SELECT( K )
IF( K.LT.N ) THEN
IF( T( K+1, K ).NE.ZERO ) THEN
PAIR = .TRUE.
SWAP = SWAP .OR. SELECT( K+1 )
END IF
END IF
IF( SWAP ) THEN
KS = KS + 1
*
* Swap the K-th block to position KS.
*
IERR = 0
KK = K
IF( K.NE.KS )
$ CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
$ IERR )
IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
*
* Blocks too close to swap: exit.
*
INFO = 1
IF( WANTS )
$ S = ZERO
IF( WANTSP )
$ SEP = ZERO
GO TO 40
END IF
IF( PAIR )
$ KS = KS + 1
END IF
END IF
20 CONTINUE
*
IF( WANTS ) THEN
*
* Solve Sylvester equation for R:
*
* T11*R - R*T22 = scale*T12
*
CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
$ LDT, WORK, N1, SCALE, IERR )
*
* Estimate the reciprocal of the condition number of the cluster
* of eigenvalues.
*
RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
IF( RNORM.EQ.ZERO ) THEN
S = ONE
ELSE
S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
$ SQRT( RNORM ) )
END IF
END IF
*
IF( WANTSP ) THEN
*
* Estimate sep(T11,T22).
*
EST = ZERO
KASE = 0
30 CONTINUE
CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Solve T11*R - R*T22 = scale*X.
*
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
$ IERR )
ELSE
*
* Solve T11**T*R - R*T22**T = scale*X.
*
CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
$ IERR )
END IF
GO TO 30
END IF
*
SEP = SCALE / EST
END IF
*
40 CONTINUE
*
* Store the output eigenvalues in WR and WI.
*
DO 50 K = 1, N
WR( K ) = T( K, K )
WI( K ) = ZERO
50 CONTINUE
DO 60 K = 1, N - 1
IF( T( K+1, K ).NE.ZERO ) THEN
WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
$ SQRT( ABS( T( K+1, K ) ) )
WI( K+1 ) = -WI( K )
END IF
60 CONTINUE
*
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of DTRSEN
*
END
|