summaryrefslogtreecommitdiff
path: root/SRC/dtprfs.f
blob: b5a5809f66cd4e9257667ac5bf64c026df0dfacc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
*> \brief \b DTPRFS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DTPRFS + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtprfs.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtprfs.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtprfs.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
*                          FERR, BERR, WORK, IWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            INFO, LDB, LDX, N, NRHS
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
*      $                   WORK( * ), X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DTPRFS provides error bounds and backward error estimates for the
*> solution to a system of linear equations with a triangular packed
*> coefficient matrix.
*>
*> The solution matrix X must be computed by DTPTRS or some other
*> means before entering this routine.  DTPRFS does not do iterative
*> refinement because doing so cannot improve the backward error.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  A is upper triangular;
*>          = 'L':  A is lower triangular.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A * X = B  (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          = 'N':  A is non-unit triangular;
*>          = 'U':  A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*>          The upper or lower triangular matrix A, packed columnwise in
*>          a linear array.  The j-th column of A is stored in the array
*>          AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*>          If DIAG = 'U', the diagonal elements of A are not referenced
*>          and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*>          The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*>          The solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*  =====================================================================
      SUBROUTINE DTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
     $                   FERR, BERR, WORK, IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            INFO, LDB, LDX, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN, NOUNIT, UPPER
      CHARACTER          TRANST
      INTEGER            I, J, K, KASE, KC, NZ
      DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DLACN2, DTPMV, DTPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOTRAN = LSAME( TRANS, 'N' )
      NOUNIT = LSAME( DIAG, 'N' )
*
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTPRFS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
         DO 10 J = 1, NRHS
            FERR( J ) = ZERO
            BERR( J ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
      IF( NOTRAN ) THEN
         TRANST = 'T'
      ELSE
         TRANST = 'N'
      END IF
*
*     NZ = maximum number of nonzero elements in each row of A, plus 1
*
      NZ = N + 1
      EPS = DLAMCH( 'Epsilon' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SAFE1 = NZ*SAFMIN
      SAFE2 = SAFE1 / EPS
*
*     Do for each right hand side
*
      DO 250 J = 1, NRHS
*
*        Compute residual R = B - op(A) * X,
*        where op(A) = A or A**T, depending on TRANS.
*
         CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
         CALL DTPMV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
         CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
*
*        Compute componentwise relative backward error from formula
*
*        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
*
*        where abs(Z) is the componentwise absolute value of the matrix
*        or vector Z.  If the i-th component of the denominator is less
*        than SAFE2, then SAFE1 is added to the i-th components of the
*        numerator and denominator before dividing.
*
         DO 20 I = 1, N
            WORK( I ) = ABS( B( I, J ) )
   20    CONTINUE
*
         IF( NOTRAN ) THEN
*
*           Compute abs(A)*abs(X) + abs(B).
*
            IF( UPPER ) THEN
               KC = 1
               IF( NOUNIT ) THEN
                  DO 40 K = 1, N
                     XK = ABS( X( K, J ) )
                     DO 30 I = 1, K
                        WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
   30                CONTINUE
                     KC = KC + K
   40             CONTINUE
               ELSE
                  DO 60 K = 1, N
                     XK = ABS( X( K, J ) )
                     DO 50 I = 1, K - 1
                        WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
   50                CONTINUE
                     WORK( K ) = WORK( K ) + XK
                     KC = KC + K
   60             CONTINUE
               END IF
            ELSE
               KC = 1
               IF( NOUNIT ) THEN
                  DO 80 K = 1, N
                     XK = ABS( X( K, J ) )
                     DO 70 I = K, N
                        WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
   70                CONTINUE
                     KC = KC + N - K + 1
   80             CONTINUE
               ELSE
                  DO 100 K = 1, N
                     XK = ABS( X( K, J ) )
                     DO 90 I = K + 1, N
                        WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
   90                CONTINUE
                     WORK( K ) = WORK( K ) + XK
                     KC = KC + N - K + 1
  100             CONTINUE
               END IF
            END IF
         ELSE
*
*           Compute abs(A**T)*abs(X) + abs(B).
*
            IF( UPPER ) THEN
               KC = 1
               IF( NOUNIT ) THEN
                  DO 120 K = 1, N
                     S = ZERO
                     DO 110 I = 1, K
                        S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  110                CONTINUE
                     WORK( K ) = WORK( K ) + S
                     KC = KC + K
  120             CONTINUE
               ELSE
                  DO 140 K = 1, N
                     S = ABS( X( K, J ) )
                     DO 130 I = 1, K - 1
                        S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  130                CONTINUE
                     WORK( K ) = WORK( K ) + S
                     KC = KC + K
  140             CONTINUE
               END IF
            ELSE
               KC = 1
               IF( NOUNIT ) THEN
                  DO 160 K = 1, N
                     S = ZERO
                     DO 150 I = K, N
                        S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  150                CONTINUE
                     WORK( K ) = WORK( K ) + S
                     KC = KC + N - K + 1
  160             CONTINUE
               ELSE
                  DO 180 K = 1, N
                     S = ABS( X( K, J ) )
                     DO 170 I = K + 1, N
                        S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  170                CONTINUE
                     WORK( K ) = WORK( K ) + S
                     KC = KC + N - K + 1
  180             CONTINUE
               END IF
            END IF
         END IF
         S = ZERO
         DO 190 I = 1, N
            IF( WORK( I ).GT.SAFE2 ) THEN
               S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
            ELSE
               S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
     $             ( WORK( I )+SAFE1 ) )
            END IF
  190    CONTINUE
         BERR( J ) = S
*
*        Bound error from formula
*
*        norm(X - XTRUE) / norm(X) .le. FERR =
*        norm( abs(inv(op(A)))*
*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
*
*        where
*          norm(Z) is the magnitude of the largest component of Z
*          inv(op(A)) is the inverse of op(A)
*          abs(Z) is the componentwise absolute value of the matrix or
*             vector Z
*          NZ is the maximum number of nonzeros in any row of A, plus 1
*          EPS is machine epsilon
*
*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
*        is incremented by SAFE1 if the i-th component of
*        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
*
*        Use DLACN2 to estimate the infinity-norm of the matrix
*           inv(op(A)) * diag(W),
*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
*
         DO 200 I = 1, N
            IF( WORK( I ).GT.SAFE2 ) THEN
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
            ELSE
               WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
            END IF
  200    CONTINUE
*
         KASE = 0
  210    CONTINUE
         CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
     $                KASE, ISAVE )
         IF( KASE.NE.0 ) THEN
            IF( KASE.EQ.1 ) THEN
*
*              Multiply by diag(W)*inv(op(A)**T).
*
               CALL DTPSV( UPLO, TRANST, DIAG, N, AP, WORK( N+1 ), 1 )
               DO 220 I = 1, N
                  WORK( N+I ) = WORK( I )*WORK( N+I )
  220          CONTINUE
            ELSE
*
*              Multiply by inv(op(A))*diag(W).
*
               DO 230 I = 1, N
                  WORK( N+I ) = WORK( I )*WORK( N+I )
  230          CONTINUE
               CALL DTPSV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
            END IF
            GO TO 210
         END IF
*
*        Normalize error.
*
         LSTRES = ZERO
         DO 240 I = 1, N
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  240    CONTINUE
         IF( LSTRES.NE.ZERO )
     $      FERR( J ) = FERR( J ) / LSTRES
*
  250 CONTINUE
*
      RETURN
*
*     End of DTPRFS
*
      END