1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
|
*> \brief \b DTGEVC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download DTGEVC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgevc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgevc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgevc.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
* LDVL, VR, LDVR, MM, M, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER HOWMNY, SIDE
* INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N
* ..
* .. Array Arguments ..
* LOGICAL SELECT( * )
* DOUBLE PRECISION P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
* $ VR( LDVR, * ), WORK( * )
* ..
*
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DTGEVC computes some or all of the right and/or left eigenvectors of
*> a pair of real matrices (S,P), where S is a quasi-triangular matrix
*> and P is upper triangular. Matrix pairs of this type are produced by
*> the generalized Schur factorization of a matrix pair (A,B):
*>
*> A = Q*S*Z**T, B = Q*P*Z**T
*>
*> as computed by DGGHRD + DHGEQZ.
*>
*> The right eigenvector x and the left eigenvector y of (S,P)
*> corresponding to an eigenvalue w are defined by:
*>
*> S*x = w*P*x, (y**H)*S = w*(y**H)*P,
*>
*> where y**H denotes the conjugate tranpose of y.
*> The eigenvalues are not input to this routine, but are computed
*> directly from the diagonal blocks of S and P.
*>
*> This routine returns the matrices X and/or Y of right and left
*> eigenvectors of (S,P), or the products Z*X and/or Q*Y,
*> where Z and Q are input matrices.
*> If Q and Z are the orthogonal factors from the generalized Schur
*> factorization of a matrix pair (A,B), then Z*X and Q*Y
*> are the matrices of right and left eigenvectors of (A,B).
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'R': compute right eigenvectors only;
*> = 'L': compute left eigenvectors only;
*> = 'B': compute both right and left eigenvectors.
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*> HOWMNY is CHARACTER*1
*> = 'A': compute all right and/or left eigenvectors;
*> = 'B': compute all right and/or left eigenvectors,
*> backtransformed by the matrices in VR and/or VL;
*> = 'S': compute selected right and/or left eigenvectors,
*> specified by the logical array SELECT.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*> SELECT is LOGICAL array, dimension (N)
*> If HOWMNY='S', SELECT specifies the eigenvectors to be
*> computed. If w(j) is a real eigenvalue, the corresponding
*> real eigenvector is computed if SELECT(j) is .TRUE..
*> If w(j) and w(j+1) are the real and imaginary parts of a
*> complex eigenvalue, the corresponding complex eigenvector
*> is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
*> and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
*> set to .FALSE..
*> Not referenced if HOWMNY = 'A' or 'B'.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices S and P. N >= 0.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (LDS,N)
*> The upper quasi-triangular matrix S from a generalized Schur
*> factorization, as computed by DHGEQZ.
*> \endverbatim
*>
*> \param[in] LDS
*> \verbatim
*> LDS is INTEGER
*> The leading dimension of array S. LDS >= max(1,N).
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is DOUBLE PRECISION array, dimension (LDP,N)
*> The upper triangular matrix P from a generalized Schur
*> factorization, as computed by DHGEQZ.
*> 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
*> of S must be in positive diagonal form.
*> \endverbatim
*>
*> \param[in] LDP
*> \verbatim
*> LDP is INTEGER
*> The leading dimension of array P. LDP >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*> VL is DOUBLE PRECISION array, dimension (LDVL,MM)
*> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*> contain an N-by-N matrix Q (usually the orthogonal matrix Q
*> of left Schur vectors returned by DHGEQZ).
*> On exit, if SIDE = 'L' or 'B', VL contains:
*> if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
*> if HOWMNY = 'B', the matrix Q*Y;
*> if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*> SELECT, stored consecutively in the columns of
*> VL, in the same order as their eigenvalues.
*> \endverbatim
*> \verbatim
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part, and the second the imaginary part.
*> \endverbatim
*> \verbatim
*> Not referenced if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of array VL. LDVL >= 1, and if
*> SIDE = 'L' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*> VR is DOUBLE PRECISION array, dimension (LDVR,MM)
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*> contain an N-by-N matrix Z (usually the orthogonal matrix Z
*> of right Schur vectors returned by DHGEQZ).
*> \endverbatim
*> \verbatim
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*> if HOWMNY = 'B' or 'b', the matrix Z*X;
*> if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
*> specified by SELECT, stored consecutively in the
*> columns of VR, in the same order as their
*> eigenvalues.
*> \endverbatim
*> \verbatim
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part and the second the imaginary part.
*>
*> Not referenced if SIDE = 'L'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the array VR. LDVR >= 1, and if
*> SIDE = 'R' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*> MM is INTEGER
*> The number of columns in the arrays VL and/or VR. MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The number of columns in the arrays VL and/or VR actually
*> used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
*> is set to N. Each selected real eigenvector occupies one
*> column and each selected complex eigenvector occupies two
*> columns.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (6*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
*> eigenvalue.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleGEcomputational
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Allocation of workspace:
*> ---------- -- ---------
*>
*> WORK( j ) = 1-norm of j-th column of A, above the diagonal
*> WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
*> WORK( 2*N+1:3*N ) = real part of eigenvector
*> WORK( 3*N+1:4*N ) = imaginary part of eigenvector
*> WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
*> WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
*>
*> Rowwise vs. columnwise solution methods:
*> ------- -- ---------- -------- -------
*>
*> Finding a generalized eigenvector consists basically of solving the
*> singular triangular system
*>
*> (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
*>
*> Consider finding the i-th right eigenvector (assume all eigenvalues
*> are real). The equation to be solved is:
*> n i
*> 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
*> k=j k=j
*>
*> where C = (A - w B) (The components v(i+1:n) are 0.)
*>
*> The "rowwise" method is:
*>
*> (1) v(i) := 1
*> for j = i-1,. . .,1:
*> i
*> (2) compute s = - sum C(j,k) v(k) and
*> k=j+1
*>
*> (3) v(j) := s / C(j,j)
*>
*> Step 2 is sometimes called the "dot product" step, since it is an
*> inner product between the j-th row and the portion of the eigenvector
*> that has been computed so far.
*>
*> The "columnwise" method consists basically in doing the sums
*> for all the rows in parallel. As each v(j) is computed, the
*> contribution of v(j) times the j-th column of C is added to the
*> partial sums. Since FORTRAN arrays are stored columnwise, this has
*> the advantage that at each step, the elements of C that are accessed
*> are adjacent to one another, whereas with the rowwise method, the
*> elements accessed at a step are spaced LDS (and LDP) words apart.
*>
*> When finding left eigenvectors, the matrix in question is the
*> transpose of the one in storage, so the rowwise method then
*> actually accesses columns of A and B at each step, and so is the
*> preferred method.
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
$ LDVL, VR, LDVR, MM, M, WORK, INFO )
*
* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER HOWMNY, SIDE
INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
DOUBLE PRECISION P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
$ VR( LDVR, * ), WORK( * )
* ..
*
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, SAFETY
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0,
$ SAFETY = 1.0D+2 )
* ..
* .. Local Scalars ..
LOGICAL COMPL, COMPR, IL2BY2, ILABAD, ILALL, ILBACK,
$ ILBBAD, ILCOMP, ILCPLX, LSA, LSB
INTEGER I, IBEG, IEIG, IEND, IHWMNY, IINFO, IM, ISIDE,
$ J, JA, JC, JE, JR, JW, NA, NW
DOUBLE PRECISION ACOEF, ACOEFA, ANORM, ASCALE, BCOEFA, BCOEFI,
$ BCOEFR, BIG, BIGNUM, BNORM, BSCALE, CIM2A,
$ CIM2B, CIMAGA, CIMAGB, CRE2A, CRE2B, CREALA,
$ CREALB, DMIN, SAFMIN, SALFAR, SBETA, SCALE,
$ SMALL, TEMP, TEMP2, TEMP2I, TEMP2R, ULP, XMAX,
$ XSCALE
* ..
* .. Local Arrays ..
DOUBLE PRECISION BDIAG( 2 ), SUM( 2, 2 ), SUMS( 2, 2 ),
$ SUMP( 2, 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DLABAD, DLACPY, DLAG2, DLALN2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Decode and Test the input parameters
*
IF( LSAME( HOWMNY, 'A' ) ) THEN
IHWMNY = 1
ILALL = .TRUE.
ILBACK = .FALSE.
ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
IHWMNY = 2
ILALL = .FALSE.
ILBACK = .FALSE.
ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
IHWMNY = 3
ILALL = .TRUE.
ILBACK = .TRUE.
ELSE
IHWMNY = -1
ILALL = .TRUE.
END IF
*
IF( LSAME( SIDE, 'R' ) ) THEN
ISIDE = 1
COMPL = .FALSE.
COMPR = .TRUE.
ELSE IF( LSAME( SIDE, 'L' ) ) THEN
ISIDE = 2
COMPL = .TRUE.
COMPR = .FALSE.
ELSE IF( LSAME( SIDE, 'B' ) ) THEN
ISIDE = 3
COMPL = .TRUE.
COMPR = .TRUE.
ELSE
ISIDE = -1
END IF
*
INFO = 0
IF( ISIDE.LT.0 ) THEN
INFO = -1
ELSE IF( IHWMNY.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTGEVC', -INFO )
RETURN
END IF
*
* Count the number of eigenvectors to be computed
*
IF( .NOT.ILALL ) THEN
IM = 0
ILCPLX = .FALSE.
DO 10 J = 1, N
IF( ILCPLX ) THEN
ILCPLX = .FALSE.
GO TO 10
END IF
IF( J.LT.N ) THEN
IF( S( J+1, J ).NE.ZERO )
$ ILCPLX = .TRUE.
END IF
IF( ILCPLX ) THEN
IF( SELECT( J ) .OR. SELECT( J+1 ) )
$ IM = IM + 2
ELSE
IF( SELECT( J ) )
$ IM = IM + 1
END IF
10 CONTINUE
ELSE
IM = N
END IF
*
* Check 2-by-2 diagonal blocks of A, B
*
ILABAD = .FALSE.
ILBBAD = .FALSE.
DO 20 J = 1, N - 1
IF( S( J+1, J ).NE.ZERO ) THEN
IF( P( J, J ).EQ.ZERO .OR. P( J+1, J+1 ).EQ.ZERO .OR.
$ P( J, J+1 ).NE.ZERO )ILBBAD = .TRUE.
IF( J.LT.N-1 ) THEN
IF( S( J+2, J+1 ).NE.ZERO )
$ ILABAD = .TRUE.
END IF
END IF
20 CONTINUE
*
IF( ILABAD ) THEN
INFO = -5
ELSE IF( ILBBAD ) THEN
INFO = -7
ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
INFO = -10
ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
INFO = -12
ELSE IF( MM.LT.IM ) THEN
INFO = -13
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTGEVC', -INFO )
RETURN
END IF
*
* Quick return if possible
*
M = IM
IF( N.EQ.0 )
$ RETURN
*
* Machine Constants
*
SAFMIN = DLAMCH( 'Safe minimum' )
BIG = ONE / SAFMIN
CALL DLABAD( SAFMIN, BIG )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
SMALL = SAFMIN*N / ULP
BIG = ONE / SMALL
BIGNUM = ONE / ( SAFMIN*N )
*
* Compute the 1-norm of each column of the strictly upper triangular
* part (i.e., excluding all elements belonging to the diagonal
* blocks) of A and B to check for possible overflow in the
* triangular solver.
*
ANORM = ABS( S( 1, 1 ) )
IF( N.GT.1 )
$ ANORM = ANORM + ABS( S( 2, 1 ) )
BNORM = ABS( P( 1, 1 ) )
WORK( 1 ) = ZERO
WORK( N+1 ) = ZERO
*
DO 50 J = 2, N
TEMP = ZERO
TEMP2 = ZERO
IF( S( J, J-1 ).EQ.ZERO ) THEN
IEND = J - 1
ELSE
IEND = J - 2
END IF
DO 30 I = 1, IEND
TEMP = TEMP + ABS( S( I, J ) )
TEMP2 = TEMP2 + ABS( P( I, J ) )
30 CONTINUE
WORK( J ) = TEMP
WORK( N+J ) = TEMP2
DO 40 I = IEND + 1, MIN( J+1, N )
TEMP = TEMP + ABS( S( I, J ) )
TEMP2 = TEMP2 + ABS( P( I, J ) )
40 CONTINUE
ANORM = MAX( ANORM, TEMP )
BNORM = MAX( BNORM, TEMP2 )
50 CONTINUE
*
ASCALE = ONE / MAX( ANORM, SAFMIN )
BSCALE = ONE / MAX( BNORM, SAFMIN )
*
* Left eigenvectors
*
IF( COMPL ) THEN
IEIG = 0
*
* Main loop over eigenvalues
*
ILCPLX = .FALSE.
DO 220 JE = 1, N
*
* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
* (b) this would be the second of a complex pair.
* Check for complex eigenvalue, so as to be sure of which
* entry(-ies) of SELECT to look at.
*
IF( ILCPLX ) THEN
ILCPLX = .FALSE.
GO TO 220
END IF
NW = 1
IF( JE.LT.N ) THEN
IF( S( JE+1, JE ).NE.ZERO ) THEN
ILCPLX = .TRUE.
NW = 2
END IF
END IF
IF( ILALL ) THEN
ILCOMP = .TRUE.
ELSE IF( ILCPLX ) THEN
ILCOMP = SELECT( JE ) .OR. SELECT( JE+1 )
ELSE
ILCOMP = SELECT( JE )
END IF
IF( .NOT.ILCOMP )
$ GO TO 220
*
* Decide if (a) singular pencil, (b) real eigenvalue, or
* (c) complex eigenvalue.
*
IF( .NOT.ILCPLX ) THEN
IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND.
$ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
*
* Singular matrix pencil -- return unit eigenvector
*
IEIG = IEIG + 1
DO 60 JR = 1, N
VL( JR, IEIG ) = ZERO
60 CONTINUE
VL( IEIG, IEIG ) = ONE
GO TO 220
END IF
END IF
*
* Clear vector
*
DO 70 JR = 1, NW*N
WORK( 2*N+JR ) = ZERO
70 CONTINUE
* T
* Compute coefficients in ( a A - b B ) y = 0
* a is ACOEF
* b is BCOEFR + i*BCOEFI
*
IF( .NOT.ILCPLX ) THEN
*
* Real eigenvalue
*
TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE,
$ ABS( P( JE, JE ) )*BSCALE, SAFMIN )
SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
SBETA = ( TEMP*P( JE, JE ) )*BSCALE
ACOEF = SBETA*ASCALE
BCOEFR = SALFAR*BSCALE
BCOEFI = ZERO
*
* Scale to avoid underflow
*
SCALE = ONE
LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
$ SMALL
IF( LSA )
$ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
IF( LSB )
$ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )*
$ MIN( BNORM, BIG ) )
IF( LSA .OR. LSB ) THEN
SCALE = MIN( SCALE, ONE /
$ ( SAFMIN*MAX( ONE, ABS( ACOEF ),
$ ABS( BCOEFR ) ) ) )
IF( LSA ) THEN
ACOEF = ASCALE*( SCALE*SBETA )
ELSE
ACOEF = SCALE*ACOEF
END IF
IF( LSB ) THEN
BCOEFR = BSCALE*( SCALE*SALFAR )
ELSE
BCOEFR = SCALE*BCOEFR
END IF
END IF
ACOEFA = ABS( ACOEF )
BCOEFA = ABS( BCOEFR )
*
* First component is 1
*
WORK( 2*N+JE ) = ONE
XMAX = ONE
ELSE
*
* Complex eigenvalue
*
CALL DLAG2( S( JE, JE ), LDS, P( JE, JE ), LDP,
$ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
$ BCOEFI )
BCOEFI = -BCOEFI
IF( BCOEFI.EQ.ZERO ) THEN
INFO = JE
RETURN
END IF
*
* Scale to avoid over/underflow
*
ACOEFA = ABS( ACOEF )
BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
SCALE = ONE
IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
$ SCALE = ( SAFMIN / ULP ) / ACOEFA
IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
$ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA )
IF( SAFMIN*ACOEFA.GT.ASCALE )
$ SCALE = ASCALE / ( SAFMIN*ACOEFA )
IF( SAFMIN*BCOEFA.GT.BSCALE )
$ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) )
IF( SCALE.NE.ONE ) THEN
ACOEF = SCALE*ACOEF
ACOEFA = ABS( ACOEF )
BCOEFR = SCALE*BCOEFR
BCOEFI = SCALE*BCOEFI
BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
END IF
*
* Compute first two components of eigenvector
*
TEMP = ACOEF*S( JE+1, JE )
TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
TEMP2I = -BCOEFI*P( JE, JE )
IF( ABS( TEMP ).GT.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
WORK( 2*N+JE ) = ONE
WORK( 3*N+JE ) = ZERO
WORK( 2*N+JE+1 ) = -TEMP2R / TEMP
WORK( 3*N+JE+1 ) = -TEMP2I / TEMP
ELSE
WORK( 2*N+JE+1 ) = ONE
WORK( 3*N+JE+1 ) = ZERO
TEMP = ACOEF*S( JE, JE+1 )
WORK( 2*N+JE ) = ( BCOEFR*P( JE+1, JE+1 )-ACOEF*
$ S( JE+1, JE+1 ) ) / TEMP
WORK( 3*N+JE ) = BCOEFI*P( JE+1, JE+1 ) / TEMP
END IF
XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
$ ABS( WORK( 2*N+JE+1 ) )+ABS( WORK( 3*N+JE+1 ) ) )
END IF
*
DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
* T
* Triangular solve of (a A - b B) y = 0
*
* T
* (rowwise in (a A - b B) , or columnwise in (a A - b B) )
*
IL2BY2 = .FALSE.
*
DO 160 J = JE + NW, N
IF( IL2BY2 ) THEN
IL2BY2 = .FALSE.
GO TO 160
END IF
*
NA = 1
BDIAG( 1 ) = P( J, J )
IF( J.LT.N ) THEN
IF( S( J+1, J ).NE.ZERO ) THEN
IL2BY2 = .TRUE.
BDIAG( 2 ) = P( J+1, J+1 )
NA = 2
END IF
END IF
*
* Check whether scaling is necessary for dot products
*
XSCALE = ONE / MAX( ONE, XMAX )
TEMP = MAX( WORK( J ), WORK( N+J ),
$ ACOEFA*WORK( J )+BCOEFA*WORK( N+J ) )
IF( IL2BY2 )
$ TEMP = MAX( TEMP, WORK( J+1 ), WORK( N+J+1 ),
$ ACOEFA*WORK( J+1 )+BCOEFA*WORK( N+J+1 ) )
IF( TEMP.GT.BIGNUM*XSCALE ) THEN
DO 90 JW = 0, NW - 1
DO 80 JR = JE, J - 1
WORK( ( JW+2 )*N+JR ) = XSCALE*
$ WORK( ( JW+2 )*N+JR )
80 CONTINUE
90 CONTINUE
XMAX = XMAX*XSCALE
END IF
*
* Compute dot products
*
* j-1
* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k)
* k=je
*
* To reduce the op count, this is done as
*
* _ j-1 _ j-1
* a*conjg( sum S(k,j)*x(k) ) - b*conjg( sum P(k,j)*x(k) )
* k=je k=je
*
* which may cause underflow problems if A or B are close
* to underflow. (E.g., less than SMALL.)
*
*
DO 120 JW = 1, NW
DO 110 JA = 1, NA
SUMS( JA, JW ) = ZERO
SUMP( JA, JW ) = ZERO
*
DO 100 JR = JE, J - 1
SUMS( JA, JW ) = SUMS( JA, JW ) +
$ S( JR, J+JA-1 )*
$ WORK( ( JW+1 )*N+JR )
SUMP( JA, JW ) = SUMP( JA, JW ) +
$ P( JR, J+JA-1 )*
$ WORK( ( JW+1 )*N+JR )
100 CONTINUE
110 CONTINUE
120 CONTINUE
*
DO 130 JA = 1, NA
IF( ILCPLX ) THEN
SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
$ BCOEFR*SUMP( JA, 1 ) -
$ BCOEFI*SUMP( JA, 2 )
SUM( JA, 2 ) = -ACOEF*SUMS( JA, 2 ) +
$ BCOEFR*SUMP( JA, 2 ) +
$ BCOEFI*SUMP( JA, 1 )
ELSE
SUM( JA, 1 ) = -ACOEF*SUMS( JA, 1 ) +
$ BCOEFR*SUMP( JA, 1 )
END IF
130 CONTINUE
*
* T
* Solve ( a A - b B ) y = SUM(,)
* with scaling and perturbation of the denominator
*
CALL DLALN2( .TRUE., NA, NW, DMIN, ACOEF, S( J, J ), LDS,
$ BDIAG( 1 ), BDIAG( 2 ), SUM, 2, BCOEFR,
$ BCOEFI, WORK( 2*N+J ), N, SCALE, TEMP,
$ IINFO )
IF( SCALE.LT.ONE ) THEN
DO 150 JW = 0, NW - 1
DO 140 JR = JE, J - 1
WORK( ( JW+2 )*N+JR ) = SCALE*
$ WORK( ( JW+2 )*N+JR )
140 CONTINUE
150 CONTINUE
XMAX = SCALE*XMAX
END IF
XMAX = MAX( XMAX, TEMP )
160 CONTINUE
*
* Copy eigenvector to VL, back transforming if
* HOWMNY='B'.
*
IEIG = IEIG + 1
IF( ILBACK ) THEN
DO 170 JW = 0, NW - 1
CALL DGEMV( 'N', N, N+1-JE, ONE, VL( 1, JE ), LDVL,
$ WORK( ( JW+2 )*N+JE ), 1, ZERO,
$ WORK( ( JW+4 )*N+1 ), 1 )
170 CONTINUE
CALL DLACPY( ' ', N, NW, WORK( 4*N+1 ), N, VL( 1, JE ),
$ LDVL )
IBEG = 1
ELSE
CALL DLACPY( ' ', N, NW, WORK( 2*N+1 ), N, VL( 1, IEIG ),
$ LDVL )
IBEG = JE
END IF
*
* Scale eigenvector
*
XMAX = ZERO
IF( ILCPLX ) THEN
DO 180 J = IBEG, N
XMAX = MAX( XMAX, ABS( VL( J, IEIG ) )+
$ ABS( VL( J, IEIG+1 ) ) )
180 CONTINUE
ELSE
DO 190 J = IBEG, N
XMAX = MAX( XMAX, ABS( VL( J, IEIG ) ) )
190 CONTINUE
END IF
*
IF( XMAX.GT.SAFMIN ) THEN
XSCALE = ONE / XMAX
*
DO 210 JW = 0, NW - 1
DO 200 JR = IBEG, N
VL( JR, IEIG+JW ) = XSCALE*VL( JR, IEIG+JW )
200 CONTINUE
210 CONTINUE
END IF
IEIG = IEIG + NW - 1
*
220 CONTINUE
END IF
*
* Right eigenvectors
*
IF( COMPR ) THEN
IEIG = IM + 1
*
* Main loop over eigenvalues
*
ILCPLX = .FALSE.
DO 500 JE = N, 1, -1
*
* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or
* (b) this would be the second of a complex pair.
* Check for complex eigenvalue, so as to be sure of which
* entry(-ies) of SELECT to look at -- if complex, SELECT(JE)
* or SELECT(JE-1).
* If this is a complex pair, the 2-by-2 diagonal block
* corresponding to the eigenvalue is in rows/columns JE-1:JE
*
IF( ILCPLX ) THEN
ILCPLX = .FALSE.
GO TO 500
END IF
NW = 1
IF( JE.GT.1 ) THEN
IF( S( JE, JE-1 ).NE.ZERO ) THEN
ILCPLX = .TRUE.
NW = 2
END IF
END IF
IF( ILALL ) THEN
ILCOMP = .TRUE.
ELSE IF( ILCPLX ) THEN
ILCOMP = SELECT( JE ) .OR. SELECT( JE-1 )
ELSE
ILCOMP = SELECT( JE )
END IF
IF( .NOT.ILCOMP )
$ GO TO 500
*
* Decide if (a) singular pencil, (b) real eigenvalue, or
* (c) complex eigenvalue.
*
IF( .NOT.ILCPLX ) THEN
IF( ABS( S( JE, JE ) ).LE.SAFMIN .AND.
$ ABS( P( JE, JE ) ).LE.SAFMIN ) THEN
*
* Singular matrix pencil -- unit eigenvector
*
IEIG = IEIG - 1
DO 230 JR = 1, N
VR( JR, IEIG ) = ZERO
230 CONTINUE
VR( IEIG, IEIG ) = ONE
GO TO 500
END IF
END IF
*
* Clear vector
*
DO 250 JW = 0, NW - 1
DO 240 JR = 1, N
WORK( ( JW+2 )*N+JR ) = ZERO
240 CONTINUE
250 CONTINUE
*
* Compute coefficients in ( a A - b B ) x = 0
* a is ACOEF
* b is BCOEFR + i*BCOEFI
*
IF( .NOT.ILCPLX ) THEN
*
* Real eigenvalue
*
TEMP = ONE / MAX( ABS( S( JE, JE ) )*ASCALE,
$ ABS( P( JE, JE ) )*BSCALE, SAFMIN )
SALFAR = ( TEMP*S( JE, JE ) )*ASCALE
SBETA = ( TEMP*P( JE, JE ) )*BSCALE
ACOEF = SBETA*ASCALE
BCOEFR = SALFAR*BSCALE
BCOEFI = ZERO
*
* Scale to avoid underflow
*
SCALE = ONE
LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEF ).LT.SMALL
LSB = ABS( SALFAR ).GE.SAFMIN .AND. ABS( BCOEFR ).LT.
$ SMALL
IF( LSA )
$ SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
IF( LSB )
$ SCALE = MAX( SCALE, ( SMALL / ABS( SALFAR ) )*
$ MIN( BNORM, BIG ) )
IF( LSA .OR. LSB ) THEN
SCALE = MIN( SCALE, ONE /
$ ( SAFMIN*MAX( ONE, ABS( ACOEF ),
$ ABS( BCOEFR ) ) ) )
IF( LSA ) THEN
ACOEF = ASCALE*( SCALE*SBETA )
ELSE
ACOEF = SCALE*ACOEF
END IF
IF( LSB ) THEN
BCOEFR = BSCALE*( SCALE*SALFAR )
ELSE
BCOEFR = SCALE*BCOEFR
END IF
END IF
ACOEFA = ABS( ACOEF )
BCOEFA = ABS( BCOEFR )
*
* First component is 1
*
WORK( 2*N+JE ) = ONE
XMAX = ONE
*
* Compute contribution from column JE of A and B to sum
* (See "Further Details", above.)
*
DO 260 JR = 1, JE - 1
WORK( 2*N+JR ) = BCOEFR*P( JR, JE ) -
$ ACOEF*S( JR, JE )
260 CONTINUE
ELSE
*
* Complex eigenvalue
*
CALL DLAG2( S( JE-1, JE-1 ), LDS, P( JE-1, JE-1 ), LDP,
$ SAFMIN*SAFETY, ACOEF, TEMP, BCOEFR, TEMP2,
$ BCOEFI )
IF( BCOEFI.EQ.ZERO ) THEN
INFO = JE - 1
RETURN
END IF
*
* Scale to avoid over/underflow
*
ACOEFA = ABS( ACOEF )
BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
SCALE = ONE
IF( ACOEFA*ULP.LT.SAFMIN .AND. ACOEFA.GE.SAFMIN )
$ SCALE = ( SAFMIN / ULP ) / ACOEFA
IF( BCOEFA*ULP.LT.SAFMIN .AND. BCOEFA.GE.SAFMIN )
$ SCALE = MAX( SCALE, ( SAFMIN / ULP ) / BCOEFA )
IF( SAFMIN*ACOEFA.GT.ASCALE )
$ SCALE = ASCALE / ( SAFMIN*ACOEFA )
IF( SAFMIN*BCOEFA.GT.BSCALE )
$ SCALE = MIN( SCALE, BSCALE / ( SAFMIN*BCOEFA ) )
IF( SCALE.NE.ONE ) THEN
ACOEF = SCALE*ACOEF
ACOEFA = ABS( ACOEF )
BCOEFR = SCALE*BCOEFR
BCOEFI = SCALE*BCOEFI
BCOEFA = ABS( BCOEFR ) + ABS( BCOEFI )
END IF
*
* Compute first two components of eigenvector
* and contribution to sums
*
TEMP = ACOEF*S( JE, JE-1 )
TEMP2R = ACOEF*S( JE, JE ) - BCOEFR*P( JE, JE )
TEMP2I = -BCOEFI*P( JE, JE )
IF( ABS( TEMP ).GE.ABS( TEMP2R )+ABS( TEMP2I ) ) THEN
WORK( 2*N+JE ) = ONE
WORK( 3*N+JE ) = ZERO
WORK( 2*N+JE-1 ) = -TEMP2R / TEMP
WORK( 3*N+JE-1 ) = -TEMP2I / TEMP
ELSE
WORK( 2*N+JE-1 ) = ONE
WORK( 3*N+JE-1 ) = ZERO
TEMP = ACOEF*S( JE-1, JE )
WORK( 2*N+JE ) = ( BCOEFR*P( JE-1, JE-1 )-ACOEF*
$ S( JE-1, JE-1 ) ) / TEMP
WORK( 3*N+JE ) = BCOEFI*P( JE-1, JE-1 ) / TEMP
END IF
*
XMAX = MAX( ABS( WORK( 2*N+JE ) )+ABS( WORK( 3*N+JE ) ),
$ ABS( WORK( 2*N+JE-1 ) )+ABS( WORK( 3*N+JE-1 ) ) )
*
* Compute contribution from columns JE and JE-1
* of A and B to the sums.
*
CREALA = ACOEF*WORK( 2*N+JE-1 )
CIMAGA = ACOEF*WORK( 3*N+JE-1 )
CREALB = BCOEFR*WORK( 2*N+JE-1 ) -
$ BCOEFI*WORK( 3*N+JE-1 )
CIMAGB = BCOEFI*WORK( 2*N+JE-1 ) +
$ BCOEFR*WORK( 3*N+JE-1 )
CRE2A = ACOEF*WORK( 2*N+JE )
CIM2A = ACOEF*WORK( 3*N+JE )
CRE2B = BCOEFR*WORK( 2*N+JE ) - BCOEFI*WORK( 3*N+JE )
CIM2B = BCOEFI*WORK( 2*N+JE ) + BCOEFR*WORK( 3*N+JE )
DO 270 JR = 1, JE - 2
WORK( 2*N+JR ) = -CREALA*S( JR, JE-1 ) +
$ CREALB*P( JR, JE-1 ) -
$ CRE2A*S( JR, JE ) + CRE2B*P( JR, JE )
WORK( 3*N+JR ) = -CIMAGA*S( JR, JE-1 ) +
$ CIMAGB*P( JR, JE-1 ) -
$ CIM2A*S( JR, JE ) + CIM2B*P( JR, JE )
270 CONTINUE
END IF
*
DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
* Columnwise triangular solve of (a A - b B) x = 0
*
IL2BY2 = .FALSE.
DO 370 J = JE - NW, 1, -1
*
* If a 2-by-2 block, is in position j-1:j, wait until
* next iteration to process it (when it will be j:j+1)
*
IF( .NOT.IL2BY2 .AND. J.GT.1 ) THEN
IF( S( J, J-1 ).NE.ZERO ) THEN
IL2BY2 = .TRUE.
GO TO 370
END IF
END IF
BDIAG( 1 ) = P( J, J )
IF( IL2BY2 ) THEN
NA = 2
BDIAG( 2 ) = P( J+1, J+1 )
ELSE
NA = 1
END IF
*
* Compute x(j) (and x(j+1), if 2-by-2 block)
*
CALL DLALN2( .FALSE., NA, NW, DMIN, ACOEF, S( J, J ),
$ LDS, BDIAG( 1 ), BDIAG( 2 ), WORK( 2*N+J ),
$ N, BCOEFR, BCOEFI, SUM, 2, SCALE, TEMP,
$ IINFO )
IF( SCALE.LT.ONE ) THEN
*
DO 290 JW = 0, NW - 1
DO 280 JR = 1, JE
WORK( ( JW+2 )*N+JR ) = SCALE*
$ WORK( ( JW+2 )*N+JR )
280 CONTINUE
290 CONTINUE
END IF
XMAX = MAX( SCALE*XMAX, TEMP )
*
DO 310 JW = 1, NW
DO 300 JA = 1, NA
WORK( ( JW+1 )*N+J+JA-1 ) = SUM( JA, JW )
300 CONTINUE
310 CONTINUE
*
* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
*
IF( J.GT.1 ) THEN
*
* Check whether scaling is necessary for sum.
*
XSCALE = ONE / MAX( ONE, XMAX )
TEMP = ACOEFA*WORK( J ) + BCOEFA*WORK( N+J )
IF( IL2BY2 )
$ TEMP = MAX( TEMP, ACOEFA*WORK( J+1 )+BCOEFA*
$ WORK( N+J+1 ) )
TEMP = MAX( TEMP, ACOEFA, BCOEFA )
IF( TEMP.GT.BIGNUM*XSCALE ) THEN
*
DO 330 JW = 0, NW - 1
DO 320 JR = 1, JE
WORK( ( JW+2 )*N+JR ) = XSCALE*
$ WORK( ( JW+2 )*N+JR )
320 CONTINUE
330 CONTINUE
XMAX = XMAX*XSCALE
END IF
*
* Compute the contributions of the off-diagonals of
* column j (and j+1, if 2-by-2 block) of A and B to the
* sums.
*
*
DO 360 JA = 1, NA
IF( ILCPLX ) THEN
CREALA = ACOEF*WORK( 2*N+J+JA-1 )
CIMAGA = ACOEF*WORK( 3*N+J+JA-1 )
CREALB = BCOEFR*WORK( 2*N+J+JA-1 ) -
$ BCOEFI*WORK( 3*N+J+JA-1 )
CIMAGB = BCOEFI*WORK( 2*N+J+JA-1 ) +
$ BCOEFR*WORK( 3*N+J+JA-1 )
DO 340 JR = 1, J - 1
WORK( 2*N+JR ) = WORK( 2*N+JR ) -
$ CREALA*S( JR, J+JA-1 ) +
$ CREALB*P( JR, J+JA-1 )
WORK( 3*N+JR ) = WORK( 3*N+JR ) -
$ CIMAGA*S( JR, J+JA-1 ) +
$ CIMAGB*P( JR, J+JA-1 )
340 CONTINUE
ELSE
CREALA = ACOEF*WORK( 2*N+J+JA-1 )
CREALB = BCOEFR*WORK( 2*N+J+JA-1 )
DO 350 JR = 1, J - 1
WORK( 2*N+JR ) = WORK( 2*N+JR ) -
$ CREALA*S( JR, J+JA-1 ) +
$ CREALB*P( JR, J+JA-1 )
350 CONTINUE
END IF
360 CONTINUE
END IF
*
IL2BY2 = .FALSE.
370 CONTINUE
*
* Copy eigenvector to VR, back transforming if
* HOWMNY='B'.
*
IEIG = IEIG - NW
IF( ILBACK ) THEN
*
DO 410 JW = 0, NW - 1
DO 380 JR = 1, N
WORK( ( JW+4 )*N+JR ) = WORK( ( JW+2 )*N+1 )*
$ VR( JR, 1 )
380 CONTINUE
*
* A series of compiler directives to defeat
* vectorization for the next loop
*
*
DO 400 JC = 2, JE
DO 390 JR = 1, N
WORK( ( JW+4 )*N+JR ) = WORK( ( JW+4 )*N+JR ) +
$ WORK( ( JW+2 )*N+JC )*VR( JR, JC )
390 CONTINUE
400 CONTINUE
410 CONTINUE
*
DO 430 JW = 0, NW - 1
DO 420 JR = 1, N
VR( JR, IEIG+JW ) = WORK( ( JW+4 )*N+JR )
420 CONTINUE
430 CONTINUE
*
IEND = N
ELSE
DO 450 JW = 0, NW - 1
DO 440 JR = 1, N
VR( JR, IEIG+JW ) = WORK( ( JW+2 )*N+JR )
440 CONTINUE
450 CONTINUE
*
IEND = JE
END IF
*
* Scale eigenvector
*
XMAX = ZERO
IF( ILCPLX ) THEN
DO 460 J = 1, IEND
XMAX = MAX( XMAX, ABS( VR( J, IEIG ) )+
$ ABS( VR( J, IEIG+1 ) ) )
460 CONTINUE
ELSE
DO 470 J = 1, IEND
XMAX = MAX( XMAX, ABS( VR( J, IEIG ) ) )
470 CONTINUE
END IF
*
IF( XMAX.GT.SAFMIN ) THEN
XSCALE = ONE / XMAX
DO 490 JW = 0, NW - 1
DO 480 JR = 1, IEND
VR( JR, IEIG+JW ) = XSCALE*VR( JR, IEIG+JW )
480 CONTINUE
490 CONTINUE
END IF
500 CONTINUE
END IF
*
RETURN
*
* End of DTGEVC
*
END
|