summaryrefslogtreecommitdiff
path: root/SRC/dsyrfsx.f
blob: 9b63c70eafae479e2ae2c678467ca13fea66518f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
      SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
     $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
     $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
     $                    WORK, IWORK, INFO )
*
*     -- LAPACK routine (version 3.2)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER          UPLO, EQUED
      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
     $                   N_ERR_BNDS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
     $                   X( LDX, * ), WORK( * )
      DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
     $                   ERR_BNDS_NORM( NRHS, * ),
     $                   ERR_BNDS_COMP( NRHS, * )
*     ..
*
*     Purpose
*     =======
*
*     DSYRFSX improves the computed solution to a system of linear
*     equations when the coefficient matrix is symmetric indefinite, and
*     provides error bounds and backward error estimates for the
*     solution.  In addition to normwise error bound, the code provides
*     maximum componentwise error bound if possible.  See comments for
*     ERR_BNDS_N and ERR_BNDS_C for details of the error bounds.
*
*     The original system of linear equations may have been equilibrated
*     before calling this routine, as described by arguments EQUED and S
*     below. In this case, the solution and error bounds returned are
*     for the original unequilibrated system.
*
*     Arguments
*     =========
*
*     Some optional parameters are bundled in the PARAMS array.  These
*     settings determine how refinement is performed, but often the
*     defaults are acceptable.  If the defaults are acceptable, users
*     can pass NPARAMS = 0 which prevents the source code from accessing
*     the PARAMS argument.
*
*     UPLO    (input) CHARACTER*1
*       = 'U':  Upper triangle of A is stored;
*       = 'L':  Lower triangle of A is stored.
*
*     EQUED   (input) CHARACTER*1
*     Specifies the form of equilibration that was done to A
*     before calling this routine. This is needed to compute
*     the solution and error bounds correctly.
*       = 'N':  No equilibration
*       = 'Y':  Both row and column equilibration, i.e., A has been
*               replaced by diag(S) * A * diag(S).
*               The right hand side B has been changed accordingly.
*
*     N       (input) INTEGER
*     The order of the matrix A.  N >= 0.
*
*     NRHS    (input) INTEGER
*     The number of right hand sides, i.e., the number of columns
*     of the matrices B and X.  NRHS >= 0.
*
*     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
*     upper triangular part of A contains the upper triangular
*     part of the matrix A, and the strictly lower triangular
*     part of A is not referenced.  If UPLO = 'L', the leading
*     N-by-N lower triangular part of A contains the lower
*     triangular part of the matrix A, and the strictly upper
*     triangular part of A is not referenced.
*
*     LDA     (input) INTEGER
*     The leading dimension of the array A.  LDA >= max(1,N).
*
*     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
*     The factored form of the matrix A.  AF contains the block
*     diagonal matrix D and the multipliers used to obtain the
*     factor U or L from the factorization A = U*D*U**T or A =
*     L*D*L**T as computed by DSYTRF.
*
*     LDAF    (input) INTEGER
*     The leading dimension of the array AF.  LDAF >= max(1,N).
*
*     IPIV    (input) INTEGER array, dimension (N)
*     Details of the interchanges and the block structure of D
*     as determined by DSYTRF.
*
*     S       (input or output) DOUBLE PRECISION array, dimension (N)
*     The scale factors for A.  If EQUED = 'Y', A is multiplied on
*     the left and right by diag(S).  S is an input argument if FACT =
*     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
*     = 'Y', each element of S must be positive.  If S is output, each
*     element of S is a power of the radix. If S is input, each element
*     of S should be a power of the radix to ensure a reliable solution
*     and error estimates. Scaling by powers of the radix does not cause
*     rounding errors unless the result underflows or overflows.
*     Rounding errors during scaling lead to refining with a matrix that
*     is not equivalent to the input matrix, producing error estimates
*     that may not be reliable.
*
*     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
*     The right hand side matrix B.
*
*     LDB     (input) INTEGER
*     The leading dimension of the array B.  LDB >= max(1,N).
*
*     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
*     On entry, the solution matrix X, as computed by DGETRS.
*     On exit, the improved solution matrix X.
*
*     LDX     (input) INTEGER
*     The leading dimension of the array X.  LDX >= max(1,N).
*
*     RCOND   (output) DOUBLE PRECISION
*     Reciprocal scaled condition number.  This is an estimate of the
*     reciprocal Skeel condition number of the matrix A after
*     equilibration (if done).  If this is less than the machine
*     precision (in particular, if it is zero), the matrix is singular
*     to working precision.  Note that the error may still be small even
*     if this number is very small and the matrix appears ill-
*     conditioned.
*
*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*     Componentwise relative backward error.  This is the
*     componentwise relative backward error of each solution vector X(j)
*     (i.e., the smallest relative change in any element of A or B that
*     makes X(j) an exact solution).
*
*     N_ERR_BNDS (input) INTEGER
*     Number of error bounds to return for each right hand side
*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
*     ERR_BNDS_COMP below.
*
*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*     For each right-hand side, this array contains information about
*     various error bounds and condition numbers corresponding to the
*     normwise relative error, which is defined as follows:
*
*     Normwise relative error in the ith solution vector:
*             max_j (abs(XTRUE(j,i) - X(j,i)))
*            ------------------------------
*                  max_j abs(X(j,i))
*
*     The array is indexed by the type of error information as described
*     below. There currently are up to three pieces of information
*     returned.
*
*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*     right-hand side.
*
*     The second index in ERR_BNDS_NORM(:,err) contains the following
*     three fields:
*     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*              reciprocal condition number is less than the threshold
*              sqrt(n) * dlamch('Epsilon').
*
*     err = 2 "Guaranteed" error bound: The estimated forward error,
*              almost certainly within a factor of 10 of the true error
*              so long as the next entry is greater than the threshold
*              sqrt(n) * dlamch('Epsilon'). This error bound should only
*              be trusted if the previous boolean is true.
*
*     err = 3  Reciprocal condition number: Estimated normwise
*              reciprocal condition number.  Compared with the threshold
*              sqrt(n) * dlamch('Epsilon') to determine if the error
*              estimate is "guaranteed". These reciprocal condition
*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*              appropriately scaled matrix Z.
*              Let Z = S*A, where S scales each row by a power of the
*              radix so all absolute row sums of Z are approximately 1.
*
*     See Lapack Working Note 165 for further details and extra
*     cautions.
*
*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*     For each right-hand side, this array contains information about
*     various error bounds and condition numbers corresponding to the
*     componentwise relative error, which is defined as follows:
*
*     Componentwise relative error in the ith solution vector:
*                    abs(XTRUE(j,i) - X(j,i))
*             max_j ----------------------
*                         abs(X(j,i))
*
*     The array is indexed by the right-hand side i (on which the
*     componentwise relative error depends), and the type of error
*     information as described below. There currently are up to three
*     pieces of information returned for each right-hand side. If
*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
*     the first (:,N_ERR_BNDS) entries are returned.
*
*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*     right-hand side.
*
*     The second index in ERR_BNDS_COMP(:,err) contains the following
*     three fields:
*     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*              reciprocal condition number is less than the threshold
*              sqrt(n) * dlamch('Epsilon').
*
*     err = 2 "Guaranteed" error bound: The estimated forward error,
*              almost certainly within a factor of 10 of the true error
*              so long as the next entry is greater than the threshold
*              sqrt(n) * dlamch('Epsilon'). This error bound should only
*              be trusted if the previous boolean is true.
*
*     err = 3  Reciprocal condition number: Estimated componentwise
*              reciprocal condition number.  Compared with the threshold
*              sqrt(n) * dlamch('Epsilon') to determine if the error
*              estimate is "guaranteed". These reciprocal condition
*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*              appropriately scaled matrix Z.
*              Let Z = S*(A*diag(x)), where x is the solution for the
*              current right-hand side and S scales each row of
*              A*diag(x) by a power of the radix so all absolute row
*              sums of Z are approximately 1.
*
*     See Lapack Working Note 165 for further details and extra
*     cautions.
*
*     NPARAMS (input) INTEGER
*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
*     PARAMS array is never referenced and default values are used.
*
*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
*     that entry will be filled with default value used for that
*     parameter.  Only positions up to NPARAMS are accessed; defaults
*     are used for higher-numbered parameters.
*
*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*            refinement or not.
*         Default: 1.0D+0
*            = 0.0 : No refinement is performed, and no error bounds are
*                    computed.
*            = 1.0 : Use the double-precision refinement algorithm,
*                    possibly with doubled-single computations if the
*                    compilation environment does not support DOUBLE
*                    PRECISION.
*              (other values are reserved for future use)
*
*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*            computations allowed for refinement.
*         Default: 10
*         Aggressive: Set to 100 to permit convergence using approximate
*                     factorizations or factorizations other than LU. If
*                     the factorization uses a technique other than
*                     Gaussian elimination, the guarantees in
*                     err_bnds_norm and err_bnds_comp may no longer be
*                     trustworthy.
*
*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*            will attempt to find a solution with small componentwise
*            relative error in the double-precision algorithm.  Positive
*            is true, 0.0 is false.
*         Default: 1.0 (attempt componentwise convergence)
*
*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
*
*     IWORK   (workspace) INTEGER array, dimension (N)
*
*     INFO    (output) INTEGER
*       = 0:  Successful exit. The solution to every right-hand side is
*         guaranteed.
*       < 0:  If INFO = -i, the i-th argument had an illegal value
*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
*         has been completed, but the factor U is exactly singular, so
*         the solution and error bounds could not be computed. RCOND = 0
*         is returned.
*       = N+J: The solution corresponding to the Jth right-hand side is
*         not guaranteed. The solutions corresponding to other right-
*         hand sides K with K > J may not be guaranteed as well, but
*         only the first such right-hand side is reported. If a small
*         componentwise error is not requested (PARAMS(3) = 0.0) then
*         the Jth right-hand side is the first with a normwise error
*         bound that is not guaranteed (the smallest J such
*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
*         the Jth right-hand side is the first with either a normwise or
*         componentwise error bound that is not guaranteed (the smallest
*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
*         about all of the right-hand sides check ERR_BNDS_NORM or
*         ERR_BNDS_COMP.
*
*     ==================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
      DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
      DOUBLE PRECISION   DZTHRESH_DEFAULT
      PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
      PARAMETER          ( ITHRESH_DEFAULT = 100.0D+0 )
      PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
      PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
      PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
     $                   LA_LINRX_CWISE_I
      PARAMETER          ( LA_LINRX_ITREF_I = 1,
     $                   LA_LINRX_ITHRESH_I = 2 )
      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
     $                   LA_LINRX_RCOND_I
      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
      INTEGER            LA_LINRX_MAX_N_ERRS
      PARAMETER          ( LA_LINRX_MAX_N_ERRS = 3 )
*     ..
*     .. Local Scalars ..
      CHARACTER(1)       NORM
      LOGICAL            RCEQU
      INTEGER            J, PREC_TYPE, REF_TYPE, N_NORMS
      DOUBLE PRECISION   ANORM, RCOND_TMP
      DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
      LOGICAL            IGNORE_CWISE
      INTEGER            ITHRESH
      DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, DSYCON, DLA_SYRFSX_EXTENDED
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. External Functions ..
      EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
      EXTERNAL           DLAMCH, DLANSY, DLA_SYRCOND
      DOUBLE PRECISION   DLAMCH, DLANSY, DLA_SYRCOND
      LOGICAL            LSAME
      INTEGER            BLAS_FPINFO_X
      INTEGER            ILATRANS, ILAPREC
*     ..
*     .. Executable Statements ..
*
*     Check the input parameters.
*
      INFO = 0
      REF_TYPE = INT( ITREF_DEFAULT )
      IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
         IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
            PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
         ELSE
            REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
         END IF
      END IF
*
*     Set default parameters.
*
      ILLRCOND_THRESH = DBLE( N )*DLAMCH( 'Epsilon' )
      ITHRESH = INT( ITHRESH_DEFAULT )
      RTHRESH = RTHRESH_DEFAULT
      UNSTABLE_THRESH = DZTHRESH_DEFAULT
      IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
*
      IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
         IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
            PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
         ELSE
            ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
         END IF
      END IF
      IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
         IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
            IF ( IGNORE_CWISE ) THEN
               PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
            ELSE
               PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
            END IF
         ELSE
            IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
         END IF
      END IF
      IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
         N_NORMS = 0
      ELSE IF ( IGNORE_CWISE ) THEN
         N_NORMS = 1
      ELSE
         N_NORMS = 2
      END IF
*
      RCEQU = LSAME( EQUED, 'Y' )
*
*     Test input parameters.
*
      IF ( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        INFO = -1
      ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
        INFO = -2
      ELSE IF( N.LT.0 ) THEN
        INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
        INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        INFO = -6
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
        INFO = -8
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        INFO = -11
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'DSYRFSX', -INFO )
        RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
         RCOND = 1.0D+0
         DO J = 1, NRHS
            BERR( J ) = 0.0D+0
            IF ( N_ERR_BNDS .GE. 1 ) THEN
               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
            ELSE IF ( N_ERR_BNDS .GE. 2 ) THEN
               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
            ELSE IF ( N_ERR_BNDS .GE. 3 ) THEN
               ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
               ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
            END IF
         END DO
         RETURN
      END IF
*
*     Default to failure.
*
      RCOND = 0.0D+0
      DO J = 1, NRHS
         BERR( J ) = 1.0D+0
         IF ( N_ERR_BNDS .GE. 1 ) THEN
            ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
            ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
         ELSE IF ( N_ERR_BNDS .GE. 2 ) THEN
            ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
            ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
         ELSE IF ( N_ERR_BNDS .GE. 3 ) THEN
            ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
            ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
         END IF
      END DO
*
*     Compute the norm of A and the reciprocal of the condition
*     number of A.
*
      NORM = 'I'
      ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
      CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
     $     IWORK, INFO )
*
*     Perform refinement on each right-hand side
*
      IF ( REF_TYPE .NE. 0 ) THEN

         PREC_TYPE = ILAPREC( 'E' )

         CALL DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO,  N,
     $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
     $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
     $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
     $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
     $        INFO )
      END IF

      ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) )*DLAMCH( 'Epsilon' )
      IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
*
*     Compute scaled normwise condition number cond(A*C).
*
         IF ( RCEQU ) THEN
            RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
     $           -1, S, INFO, WORK, IWORK )
         ELSE
            RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
     $           0, S, INFO, WORK, IWORK )
         END IF
         DO J = 1, NRHS
*
*     Cap the error at 1.0.
*
            IF (N_ERR_BNDS .GE. LA_LINRX_ERR_I
     $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
     $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
*
*     Threshold the error (see LAWN).
*
            IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
               IF ( INFO .LE. N ) INFO = N + J
            ELSE IF (ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND)
     $              THEN
               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
            END IF
*
*     Save the condition number.
*
            IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
               ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
            END IF
         END DO
      END IF

      IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
*
*     Compute componentwise condition number cond(A*diag(Y(:,J))) for
*     each right-hand side using the current solution as an estimate of
*     the true solution.  If the componentwise error estimate is too
*     large, then the solution is a lousy estimate of truth and the
*     estimated RCOND may be too optimistic.  To avoid misleading users,
*     the inverse condition number is set to 0.0 when the estimated
*     cwise error is at least CWISE_WRONG.
*
         CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
         DO J = 1, NRHS
            IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
     $     THEN
               RCOND_TMP = DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV,
     $              1, X(1,J), INFO, WORK, IWORK )
            ELSE
               RCOND_TMP = 0.0D+0
            END IF
*
*     Cap the error at 1.0.
*
            IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
     $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
     $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
*
*     Threshold the error (see LAWN).
*
            IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
               IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
     $              .AND. INFO.LT.N + J ) INFO = N + J
            ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
     $              .LT. ERR_LBND ) THEN
               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
            END IF
*
*     Save the condition number.
*
            IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
               ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
            END IF

         END DO
      END IF
*
      RETURN
*
*     End of DSYRFSX
*
      END