1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
*> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DSYGS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
*> to standard form.
*>
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*>
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
*>
*> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
*> = 2 or 3: compute U*A*U**T or L**T *A*L.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored, and how B has been factorized.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
*> n by n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,N)
*> The triangular factor from the Cholesky factorization of B,
*> as returned by DPOTRF.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleSYcomputational
*
* =====================================================================
SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, HALF
PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER K
DOUBLE PRECISION AKK, BKK, CT
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYGS2', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
IF( UPPER ) THEN
*
* Compute inv(U**T)*A*inv(U)
*
DO 10 K = 1, N
*
* Update the upper triangle of A(k:n,k:n)
*
AKK = A( K, K )
BKK = B( K, K )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
CT = -HALF*AKK
CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
$ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL DTRSV( UPLO, 'Transpose', 'Non-unit', N-K,
$ B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
END IF
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L**T)
*
DO 20 K = 1, N
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = A( K, K )
BKK = B( K, K )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
CT = -HALF*AKK
CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
$ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
CALL DTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
$ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
END IF
20 CONTINUE
END IF
ELSE
IF( UPPER ) THEN
*
* Compute U*A*U**T
*
DO 30 K = 1, N
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = A( K, K )
BKK = B( K, K )
CALL DTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
$ LDB, A( 1, K ), 1 )
CT = HALF*AKK
CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
$ A, LDA )
CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
A( K, K ) = AKK*BKK**2
30 CONTINUE
ELSE
*
* Compute L**T *A*L
*
DO 40 K = 1, N
*
* Update the lower triangle of A(1:k,1:k)
*
AKK = A( K, K )
BKK = B( K, K )
CALL DTRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
$ A( K, 1 ), LDA )
CT = HALF*AKK
CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
$ LDB, A, LDA )
CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
A( K, K ) = AKK*BKK**2
40 CONTINUE
END IF
END IF
RETURN
*
* End of DSYGS2
*
END
|