1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
$ RCOND, FERR, BERR, WORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER FACT
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
$ E( * ), EF( * ), FERR( * ), WORK( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* DPTSVX uses the factorization A = L*D*L**T to compute the solution
* to a real system of linear equations A*X = B, where A is an N-by-N
* symmetric positive definite tridiagonal matrix and X and B are
* N-by-NRHS matrices.
*
* Error bounds on the solution and a condition estimate are also
* provided.
*
* Description
* ===========
*
* The following steps are performed:
*
* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
* is a unit lower bidiagonal matrix and D is diagonal. The
* factorization can also be regarded as having the form
* A = U**T*D*U.
*
* 2. If the leading i-by-i principal minor is not positive definite,
* then the routine returns with INFO = i. Otherwise, the factored
* form of A is used to estimate the condition number of the matrix
* A. If the reciprocal of the condition number is less than machine
* precision, INFO = N+1 is returned as a warning, but the routine
* still goes on to solve for X and compute error bounds as
* described below.
*
* 3. The system of equations is solved for X using the factored form
* of A.
*
* 4. Iterative refinement is applied to improve the computed solution
* matrix and calculate error bounds and backward error estimates
* for it.
*
* Arguments
* =========
*
* FACT (input) CHARACTER*1
* Specifies whether or not the factored form of A has been
* supplied on entry.
* = 'F': On entry, DF and EF contain the factored form of A.
* D, E, DF, and EF will not be modified.
* = 'N': The matrix A will be copied to DF and EF and
* factored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices B and X. NRHS >= 0.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The n diagonal elements of the tridiagonal matrix A.
*
* E (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) subdiagonal elements of the tridiagonal matrix A.
*
* DF (input or output) DOUBLE PRECISION array, dimension (N)
* If FACT = 'F', then DF is an input argument and on entry
* contains the n diagonal elements of the diagonal matrix D
* from the L*D*L**T factorization of A.
* If FACT = 'N', then DF is an output argument and on exit
* contains the n diagonal elements of the diagonal matrix D
* from the L*D*L**T factorization of A.
*
* EF (input or output) DOUBLE PRECISION array, dimension (N-1)
* If FACT = 'F', then EF is an input argument and on entry
* contains the (n-1) subdiagonal elements of the unit
* bidiagonal factor L from the L*D*L**T factorization of A.
* If FACT = 'N', then EF is an output argument and on exit
* contains the (n-1) subdiagonal elements of the unit
* bidiagonal factor L from the L*D*L**T factorization of A.
*
* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
* The N-by-NRHS right hand side matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal condition number of the matrix A. If RCOND
* is less than the machine precision (in particular, if
* RCOND = 0), the matrix is singular to working precision.
* This condition is indicated by a return code of INFO > 0.
*
* FERR (output) DOUBLE PRECISION array, dimension (NRHS)
* The forward error bound for each solution vector
* X(j) (the j-th column of the solution matrix X).
* If XTRUE is the true solution corresponding to X(j), FERR(j)
* is an estimated upper bound for the magnitude of the largest
* element in (X(j) - XTRUE) divided by the magnitude of the
* largest element in X(j).
*
* BERR (output) DOUBLE PRECISION array, dimension (NRHS)
* The componentwise relative backward error of each solution
* vector X(j) (i.e., the smallest relative change in any
* element of A or B that makes X(j) an exact solution).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, and i is
* <= N: the leading minor of order i of A is
* not positive definite, so the factorization
* could not be completed, and the solution has not
* been computed. RCOND = 0 is returned.
* = N+1: U is nonsingular, but RCOND is less than machine
* precision, meaning that the matrix is singular
* to working precision. Nevertheless, the
* solution and error bounds are computed because
* there are a number of situations where the
* computed solution can be more accurate than the
* value of RCOND would suggest.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOFACT
DOUBLE PRECISION ANORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL LSAME, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPTSVX', -INFO )
RETURN
END IF
*
IF( NOFACT ) THEN
*
* Compute the L*D*L' (or U'*D*U) factorization of A.
*
CALL DCOPY( N, D, 1, DF, 1 )
IF( N.GT.1 )
$ CALL DCOPY( N-1, E, 1, EF, 1 )
CALL DPTTRF( N, DF, EF, INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.GT.0 )THEN
RCOND = ZERO
RETURN
END IF
END IF
*
* Compute the norm of the matrix A.
*
ANORM = DLANST( '1', N, D, E )
*
* Compute the reciprocal of the condition number of A.
*
CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
*
* Compute the solution vectors X.
*
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solutions and
* compute error bounds and backward error estimates for them.
*
CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
$ WORK, INFO )
*
* Set INFO = N+1 if the matrix is singular to working precision.
*
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
$ INFO = N + 1
*
RETURN
*
* End of DPTSVX
*
END
|