1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
*> \brief <b> DPTSVX computes the solution to system of linear equations A * X = B for PT matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DPTSVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptsvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptsvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptsvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
* RCOND, FERR, BERR, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER FACT
* INTEGER INFO, LDB, LDX, N, NRHS
* DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
* $ E( * ), EF( * ), FERR( * ), WORK( * ),
* $ X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DPTSVX uses the factorization A = L*D*L**T to compute the solution
*> to a real system of linear equations A*X = B, where A is an N-by-N
*> symmetric positive definite tridiagonal matrix and X and B are
*> N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
* =================
*>
*> \verbatim
*>
*> The following steps are performed:
*>
*> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
*> is a unit lower bidiagonal matrix and D is diagonal. The
*> factorization can also be regarded as having the form
*> A = U**T*D*U.
*>
*> 2. If the leading i-by-i principal minor is not positive definite,
*> then the routine returns with INFO = i. Otherwise, the factored
*> form of A is used to estimate the condition number of the matrix
*> A. If the reciprocal of the condition number is less than machine
*> precision, INFO = N+1 is returned as a warning, but the routine
*> still goes on to solve for X and compute error bounds as
*> described below.
*>
*> 3. The system of equations is solved for X using the factored form
*> of A.
*>
*> 4. Iterative refinement is applied to improve the computed solution
*> matrix and calculate error bounds and backward error estimates
*> for it.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] FACT
*> \verbatim
*> FACT is CHARACTER*1
*> Specifies whether or not the factored form of A has been
*> supplied on entry.
*> = 'F': On entry, DF and EF contain the factored form of A.
*> D, E, DF, and EF will not be modified.
*> = 'N': The matrix A will be copied to DF and EF and
*> factored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in,out] DF
*> \verbatim
*> DF is DOUBLE PRECISION array, dimension (N)
*> If FACT = 'F', then DF is an input argument and on entry
*> contains the n diagonal elements of the diagonal matrix D
*> from the L*D*L**T factorization of A.
*> If FACT = 'N', then DF is an output argument and on exit
*> contains the n diagonal elements of the diagonal matrix D
*> from the L*D*L**T factorization of A.
*> \endverbatim
*>
*> \param[in,out] EF
*> \verbatim
*> EF is DOUBLE PRECISION array, dimension (N-1)
*> If FACT = 'F', then EF is an input argument and on entry
*> contains the (n-1) subdiagonal elements of the unit
*> bidiagonal factor L from the L*D*L**T factorization of A.
*> If FACT = 'N', then EF is an output argument and on exit
*> contains the (n-1) subdiagonal elements of the unit
*> bidiagonal factor L from the L*D*L**T factorization of A.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> The N-by-NRHS right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The reciprocal condition number of the matrix A. If RCOND
*> is less than the machine precision (in particular, if
*> RCOND = 0), the matrix is singular to working precision.
*> This condition is indicated by a return code of INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
*> The forward error bound for each solution vector
*> X(j) (the j-th column of the solution matrix X).
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
*> is an estimated upper bound for the magnitude of the largest
*> element in (X(j) - XTRUE) divided by the magnitude of the
*> largest element in X(j).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector X(j) (i.e., the smallest relative change in any
*> element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, and i is
*> <= N: the leading minor of order i of A is
*> not positive definite, so the factorization
*> could not be completed, and the solution has not
*> been computed. RCOND = 0 is returned.
*> = N+1: U is nonsingular, but RCOND is less than machine
*> precision, meaning that the matrix is singular
*> to working precision. Nevertheless, the
*> solution and error bounds are computed because
*> there are a number of situations where the
*> computed solution can be more accurate than the
*> value of RCOND would suggest.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup doublePTsolve
*
* =====================================================================
SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
$ RCOND, FERR, BERR, WORK, INFO )
*
* -- LAPACK driver routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER FACT
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ),
$ E( * ), EF( * ), FERR( * ), WORK( * ),
$ X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOFACT
DOUBLE PRECISION ANORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL LSAME, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
NOFACT = LSAME( FACT, 'N' )
IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPTSVX', -INFO )
RETURN
END IF
*
IF( NOFACT ) THEN
*
* Compute the L*D*L**T (or U**T*D*U) factorization of A.
*
CALL DCOPY( N, D, 1, DF, 1 )
IF( N.GT.1 )
$ CALL DCOPY( N-1, E, 1, EF, 1 )
CALL DPTTRF( N, DF, EF, INFO )
*
* Return if INFO is non-zero.
*
IF( INFO.GT.0 )THEN
RCOND = ZERO
RETURN
END IF
END IF
*
* Compute the norm of the matrix A.
*
ANORM = DLANST( '1', N, D, E )
*
* Compute the reciprocal of the condition number of A.
*
CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
*
* Compute the solution vectors X.
*
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
*
* Use iterative refinement to improve the computed solutions and
* compute error bounds and backward error estimates for them.
*
CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
$ WORK, INFO )
*
* Set INFO = N+1 if the matrix is singular to working precision.
*
IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
$ INFO = N + 1
*
RETURN
*
* End of DPTSVX
*
END
|