summaryrefslogtreecommitdiff
path: root/SRC/dpoequ.f
blob: a5baa17c55b83536aa030c10de0bb586bd6fc40c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE DPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
      DOUBLE PRECISION   AMAX, SCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), S( * )
*     ..
*
*  Purpose
*  =======
*
*  DPOEQU computes row and column scalings intended to equilibrate a
*  symmetric positive definite matrix A and reduce its condition number
*  (with respect to the two-norm).  S contains the scale factors,
*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
*  choice of S puts the condition number of B within a factor N of the
*  smallest possible condition number over all possible diagonal
*  scalings.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The N-by-N symmetric positive definite matrix whose scaling
*          factors are to be computed.  Only the diagonal elements of A
*          are referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  S       (output) DOUBLE PRECISION array, dimension (N)
*          If INFO = 0, S contains the scale factors for A.
*
*  SCOND   (output) DOUBLE PRECISION
*          If INFO = 0, S contains the ratio of the smallest S(i) to
*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
*          large nor too small, it is not worth scaling by S.
*
*  AMAX    (output) DOUBLE PRECISION
*          Absolute value of largest matrix element.  If AMAX is very
*          close to overflow or very close to underflow, the matrix
*          should be scaled.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   SMIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPOEQU', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SCOND = ONE
         AMAX = ZERO
         RETURN
      END IF
*
*     Find the minimum and maximum diagonal elements.
*
      S( 1 ) = A( 1, 1 )
      SMIN = S( 1 )
      AMAX = S( 1 )
      DO 10 I = 2, N
         S( I ) = A( I, I )
         SMIN = MIN( SMIN, S( I ) )
         AMAX = MAX( AMAX, S( I ) )
   10 CONTINUE
*
      IF( SMIN.LE.ZERO ) THEN
*
*        Find the first non-positive diagonal element and return.
*
         DO 20 I = 1, N
            IF( S( I ).LE.ZERO ) THEN
               INFO = I
               RETURN
            END IF
   20    CONTINUE
      ELSE
*
*        Set the scale factors to the reciprocals
*        of the diagonal elements.
*
         DO 30 I = 1, N
            S( I ) = ONE / SQRT( S( I ) )
   30    CONTINUE
*
*        Compute SCOND = min(S(I)) / max(S(I))
*
         SCOND = SQRT( SMIN ) / SQRT( AMAX )
      END IF
      RETURN
*
*     End of DPOEQU
*
      END