summaryrefslogtreecommitdiff
path: root/SRC/dpbsvx.f
blob: 6469b1e86de332d41b07a4c8bb2d571d539994e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
      SUBROUTINE DPBSVX( FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB,
     $                   EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, UPLO
      INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
     $                   BERR( * ), FERR( * ), S( * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
*  compute the solution to a real system of linear equations
*     A * X = B,
*  where A is an N-by-N symmetric positive definite band matrix and X
*  and B are N-by-NRHS matrices.
*
*  Error bounds on the solution and a condition estimate are also
*  provided.
*
*  Description
*  ===========
*
*  The following steps are performed:
*
*  1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
*
*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
*     factor the matrix A (after equilibration if FACT = 'E') as
*        A = U**T * U,  if UPLO = 'U', or
*        A = L * L**T,  if UPLO = 'L',
*     where U is an upper triangular band matrix, and L is a lower
*     triangular band matrix.
*
*  3. If the leading i-by-i principal minor is not positive definite,
*     then the routine returns with INFO = i. Otherwise, the factored
*     form of A is used to estimate the condition number of the matrix
*     A.  If the reciprocal of the condition number is less than machine
*     precision, INFO = N+1 is returned as a warning, but the routine
*     still goes on to solve for X and compute error bounds as
*     described below.
*
*  4. The system of equations is solved for X using the factored form
*     of A.
*
*  5. Iterative refinement is applied to improve the computed solution
*     matrix and calculate error bounds and backward error estimates
*     for it.
*
*  6. If equilibration was used, the matrix X is premultiplied by
*     diag(S) so that it solves the original system before
*     equilibration.
*
*  Arguments
*  =========
*
*  FACT    (input) CHARACTER*1
*          Specifies whether or not the factored form of the matrix A is
*          supplied on entry, and if not, whether the matrix A should be
*          equilibrated before it is factored.
*          = 'F':  On entry, AFB contains the factored form of A.
*                  If EQUED = 'Y', the matrix A has been equilibrated
*                  with scaling factors given by S.  AB and AFB will not
*                  be modified.
*          = 'N':  The matrix A will be copied to AFB and factored.
*          = 'E':  The matrix A will be equilibrated if necessary, then
*                  copied to AFB and factored.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals of the matrix A if UPLO = 'U',
*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right-hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
*          On entry, the upper or lower triangle of the symmetric band
*          matrix A, stored in the first KD+1 rows of the array, except
*          if FACT = 'F' and EQUED = 'Y', then A must contain the
*          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
*          is stored in the j-th column of the array AB as follows:
*          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
*          See below for further details.
*
*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
*          diag(S)*A*diag(S).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array A.  LDAB >= KD+1.
*
*  AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
*          If FACT = 'F', then AFB is an input argument and on entry
*          contains the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T of the band matrix
*          A, in the same storage format as A (see AB).  If EQUED = 'Y',
*          then AFB is the factored form of the equilibrated matrix A.
*
*          If FACT = 'N', then AFB is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T.
*
*          If FACT = 'E', then AFB is an output argument and on exit
*          returns the triangular factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T of the equilibrated
*          matrix A (see the description of A for the form of the
*          equilibrated matrix).
*
*  LDAFB   (input) INTEGER
*          The leading dimension of the array AFB.  LDAFB >= KD+1.
*
*  EQUED   (input or output) CHARACTER*1
*          Specifies the form of equilibration that was done.
*          = 'N':  No equilibration (always true if FACT = 'N').
*          = 'Y':  Equilibration was done, i.e., A has been replaced by
*                  diag(S) * A * diag(S).
*          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*          output argument.
*
*  S       (input or output) DOUBLE PRECISION array, dimension (N)
*          The scale factors for A; not accessed if EQUED = 'N'.  S is
*          an input argument if FACT = 'F'; otherwise, S is an output
*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
*          must be positive.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, the N-by-NRHS right hand side matrix B.
*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
*          B is overwritten by diag(S) * B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
*          the original system of equations.  Note that if EQUED = 'Y',
*          A and B are modified on exit, and the solution to the
*          equilibrated system is inv(diag(S))*X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  RCOND   (output) DOUBLE PRECISION
*          The estimate of the reciprocal condition number of the matrix
*          A after equilibration (if done).  If RCOND is less than the
*          machine precision (in particular, if RCOND = 0), the matrix
*          is singular to working precision.  This condition is
*          indicated by a return code of INFO > 0.
*
*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The estimated forward error bound for each solution vector
*          X(j) (the j-th column of the solution matrix X).
*          If XTRUE is the true solution corresponding to X(j), FERR(j)
*          is an estimated upper bound for the magnitude of the largest
*          element in (X(j) - XTRUE) divided by the magnitude of the
*          largest element in X(j).  The estimate is as reliable as
*          the estimate for RCOND, and is almost always a slight
*          overestimate of the true error.
*
*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any element of A or B that makes X(j) an exact solution).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
*
*  IWORK   (workspace) INTEGER array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, and i is
*                <= N:  the leading minor of order i of A is
*                       not positive definite, so the factorization
*                       could not be completed, and the solution has not
*                       been computed. RCOND = 0 is returned.
*                = N+1: U is nonsingular, but RCOND is less than machine
*                       precision, meaning that the matrix is singular
*                       to working precision.  Nevertheless, the
*                       solution and error bounds are computed because
*                       there are a number of situations where the
*                       computed solution can be more accurate than the
*                       value of RCOND would suggest.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  N = 6, KD = 2, and UPLO = 'U':
*
*  Two-dimensional storage of the symmetric matrix A:
*
*     a11  a12  a13
*          a22  a23  a24
*               a33  a34  a35
*                    a44  a45  a46
*                         a55  a56
*     (aij=conjg(aji))         a66
*
*  Band storage of the upper triangle of A:
*
*      *    *   a13  a24  a35  a46
*      *   a12  a23  a34  a45  a56
*     a11  a22  a33  a44  a55  a66
*
*  Similarly, if UPLO = 'L' the format of A is as follows:
*
*     a11  a22  a33  a44  a55  a66
*     a21  a32  a43  a54  a65   *
*     a31  a42  a53  a64   *    *
*
*  Array elements marked * are not used by the routine.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            EQUIL, NOFACT, RCEQU, UPPER
      INTEGER            I, INFEQU, J, J1, J2
      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANSB
      EXTERNAL           LSAME, DLAMCH, DLANSB
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAQSB, DPBCON, DPBEQU, DPBRFS,
     $                   DPBTRF, DPBTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      UPPER = LSAME( UPLO, 'U' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         RCEQU = .FALSE.
      ELSE
         RCEQU = LSAME( EQUED, 'Y' )
         SMLNUM = DLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KD.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -7
      ELSE IF( LDAFB.LT.KD+1 ) THEN
         INFO = -9
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -10
      ELSE
         IF( RCEQU ) THEN
            SMIN = BIGNUM
            SMAX = ZERO
            DO 10 J = 1, N
               SMIN = MIN( SMIN, S( J ) )
               SMAX = MAX( SMAX, S( J ) )
   10       CONTINUE
            IF( SMIN.LE.ZERO ) THEN
               INFO = -11
            ELSE IF( N.GT.0 ) THEN
               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
            ELSE
               SCOND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX( 1, N ) ) THEN
               INFO = -13
            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
               INFO = -15
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPBSVX', -INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL DLAQSB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
            RCEQU = LSAME( EQUED, 'Y' )
         END IF
      END IF
*
*     Scale the right-hand side.
*
      IF( RCEQU ) THEN
         DO 30 J = 1, NRHS
            DO 20 I = 1, N
               B( I, J ) = S( I )*B( I, J )
   20       CONTINUE
   30    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the Cholesky factorization A = U'*U or A = L*L'.
*
         IF( UPPER ) THEN
            DO 40 J = 1, N
               J1 = MAX( J-KD, 1 )
               CALL DCOPY( J-J1+1, AB( KD+1-J+J1, J ), 1,
     $                     AFB( KD+1-J+J1, J ), 1 )
   40       CONTINUE
         ELSE
            DO 50 J = 1, N
               J2 = MIN( J+KD, N )
               CALL DCOPY( J2-J+1, AB( 1, J ), 1, AFB( 1, J ), 1 )
   50       CONTINUE
         END IF
*
         CALL DPBTRF( UPLO, N, KD, AFB, LDAFB, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 )THEN
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A.
*
      ANORM = DLANSB( '1', UPLO, N, KD, AB, LDAB, WORK )
*
*     Compute the reciprocal of the condition number of A.
*
      CALL DPBCON( UPLO, N, KD, AFB, LDAFB, ANORM, RCOND, WORK, IWORK,
     $             INFO )
*
*     Compute the solution matrix X.
*
      CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL DPBTRS( UPLO, N, KD, NRHS, AFB, LDAFB, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL DPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X,
     $             LDX, FERR, BERR, WORK, IWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( RCEQU ) THEN
         DO 70 J = 1, NRHS
            DO 60 I = 1, N
               X( I, J ) = S( I )*X( I, J )
   60       CONTINUE
   70    CONTINUE
         DO 80 J = 1, NRHS
            FERR( J ) = FERR( J ) / SCOND
   80    CONTINUE
      END IF
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      RETURN
*
*     End of DPBSVX
*
      END