summaryrefslogtreecommitdiff
path: root/SRC/dorgr2.f
blob: cf4a0b8cef702b4eeb2f42ba006574350ab12c94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
*> \brief \b DORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DORGR2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgr2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgr2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgr2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDA, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DORGR2 generates an m by n real matrix Q with orthonormal rows,
*> which is defined as the last m rows of a product of k elementary
*> reflectors of order n
*>
*>       Q  =  H(1) H(2) . . . H(k)
*>
*> as returned by DGERQF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q. N >= M.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          matrix Q. M >= K >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          On entry, the (m-k+i)-th row must contain the vector which
*>          defines the elementary reflector H(i), for i = 1,2,...,k, as
*>          returned by DGERQF in the last k rows of its array argument
*>          A.
*>          On exit, the m by n matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The first dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is DOUBLE PRECISION array, dimension (K)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by DGERQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument has an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*  =====================================================================
      SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARF, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGR2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 )
     $   RETURN
*
      IF( K.LT.M ) THEN
*
*        Initialise rows 1:m-k to rows of the unit matrix
*
         DO 20 J = 1, N
            DO 10 L = 1, M - K
               A( L, J ) = ZERO
   10       CONTINUE
            IF( J.GT.N-M .AND. J.LE.N-K )
     $         A( M-N+J, J ) = ONE
   20    CONTINUE
      END IF
*
      DO 40 I = 1, K
         II = M - K + I
*
*        Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
*
         A( II, N-M+II ) = ONE
         CALL DLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
     $               A, LDA, WORK )
         CALL DSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
         A( II, N-M+II ) = ONE - TAU( I )
*
*        Set A(m-k+i,n-k+i+1:n) to zero
*
         DO 30 L = N - M + II + 1, N
            A( II, L ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of DORGR2
*
      END