1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DORGR2 generates an m by n real matrix Q with orthonormal rows,
* which is defined as the last m rows of a product of k elementary
* reflectors of order n
*
* Q = H(1) H(2) . . . H(k)
*
* as returned by DGERQF.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q. N >= M.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the (m-k+i)-th row must contain the vector which
* defines the elementary reflector H(i), for i = 1,2,...,k, as
* returned by DGERQF in the last k rows of its array argument
* A.
* On exit, the m by n matrix Q.
*
* LDA (input) INTEGER
* The first dimension of the array A. LDA >= max(1,M).
*
* TAU (input) DOUBLE PRECISION array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DGERQF.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument has an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, II, J, L
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.M ) THEN
INFO = -2
ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGR2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.LE.0 )
$ RETURN
*
IF( K.LT.M ) THEN
*
* Initialise rows 1:m-k to rows of the unit matrix
*
DO 20 J = 1, N
DO 10 L = 1, M - K
A( L, J ) = ZERO
10 CONTINUE
IF( J.GT.N-M .AND. J.LE.N-K )
$ A( M-N+J, J ) = ONE
20 CONTINUE
END IF
*
DO 40 I = 1, K
II = M - K + I
*
* Apply H(i) to A(1:m-k+i,1:n-k+i) from the right
*
A( II, N-M+II ) = ONE
CALL DLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, TAU( I ),
$ A, LDA, WORK )
CALL DSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
A( II, N-M+II ) = ONE - TAU( I )
*
* Set A(m-k+i,n-k+i+1:n) to zero
*
DO 30 L = N - M + II + 1, N
A( II, L ) = ZERO
30 CONTINUE
40 CONTINUE
RETURN
*
* End of DORGR2
*
END
|