1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DORGHR generates a real orthogonal matrix Q which is defined as the
* product of IHI-ILO elementary reflectors of order N, as returned by
* DGEHRD:
*
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix Q. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI must have the same values as in the previous call
* of DGEHRD. Q is equal to the unit matrix except in the
* submatrix Q(ilo+1:ihi,ilo+1:ihi).
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the vectors which define the elementary reflectors,
* as returned by DGEHRD.
* On exit, the N-by-N orthogonal matrix Q.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DGEHRD.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= IHI-ILO.
* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
* the optimal blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IINFO, J, LWKOPT, NB, NH
* ..
* .. External Subroutines ..
EXTERNAL DORGQR, XERBLA
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
NH = IHI - ILO
LQUERY = ( LWORK.EQ.-1 )
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'DORGQR', ' ', NH, NH, NH, -1 )
LWKOPT = MAX( 1, NH )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGHR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
* Shift the vectors which define the elementary reflectors one
* column to the right, and set the first ilo and the last n-ihi
* rows and columns to those of the unit matrix
*
DO 40 J = IHI, ILO + 1, -1
DO 10 I = 1, J - 1
A( I, J ) = ZERO
10 CONTINUE
DO 20 I = J + 1, IHI
A( I, J ) = A( I, J-1 )
20 CONTINUE
DO 30 I = IHI + 1, N
A( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
DO 60 J = 1, ILO
DO 50 I = 1, N
A( I, J ) = ZERO
50 CONTINUE
A( J, J ) = ONE
60 CONTINUE
DO 80 J = IHI + 1, N
DO 70 I = 1, N
A( I, J ) = ZERO
70 CONTINUE
A( J, J ) = ONE
80 CONTINUE
*
IF( NH.GT.0 ) THEN
*
* Generate Q(ilo+1:ihi,ilo+1:ihi)
*
CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
$ WORK, LWORK, IINFO )
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of DORGHR
*
END
|